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Abstract
Deep reinforcement learning (RL) agents often
fail to generalize to unseen scenarios, even when
they are trained on many instances of semanti-
cally similar environments. Data augmentation
has recently been shown to improve the sample
efficiency and generalization of RL agents. How-
ever, different tasks tend to benefit from different
kinds of data augmentation. In this paper, we com-
pare three approaches for automatically finding an
appropriate augmentation. These are combined
with two novel regularization terms for the policy
and value function, required to make the use of
data augmentation theoretically sound for certain
actor-critic algorithms. We evaluate our approach
on the Procgen benchmark which consists of 16
procedurally-generated environments and show
that it improves test performance by ∼ 40%.

1. Introduction
Generalization remains one of the key challenges of deep
reinforcement learning (RL). A series of recent studies show
that RL agents fail to generalize to new environments (Fare-
brother et al., 2018; Gamrian & Goldberg, 2019; Zhang
et al., 2018; Cobbe et al., 2018; 2019; Song et al., 2020).
This indicates that current RL methods memorize specific
trajectories rather than learning transferable skills. To im-
prove generalization in RL, several strategies have been
proposed, such as the use of regularization (Farebrother
et al., 2018; Zhang et al., 2018; Cobbe et al., 2018; Igl
et al., 2019), data augmentation (Cobbe et al., 2018; Lee
et al., 2020; Kostrikov et al., 2020; Laskin et al., 2020), or
representation learning (Igl et al., 2019; Lee et al., 2020).

In this paper, we show that a naive application of data aug-
mentation can lead to both theoretical and practical prob-
lems with standard RL algorithms. As a solution, we pro-
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pose Data-regularized Actor-Critic or DrAC, a new algo-
rithm that enables the use of data augmentation with actor-
critic algorithms in a theoretically sound way. Specifically,
we introduce two regularization terms which constrain the
agent’s policy and value function to be invariant to various
state transformations. Empirically, this method allows the
agent to learn useful behaviors in settings in which a naive
use of data augmentation completely fails or converges to a
sub-optimal policy.

The current use of data augmentation in RL relies on expert
knowledge to pick an appropriate augmentation (Lee et al.,
2020; Kostrikov et al., 2020) or separately evaluates a large
number of transformations to find the best one (Cobbe et al.,
2018; Laskin et al., 2020). In this paper, we propose three
methods for automatically finding a good augmentation for
a given task. The first two automatically find an effective
augmentation from a fixed set, using either the upper confi-
dence bound (UCB, Auer (2002)) algorithm (UCB-DrAC),
or meta-learning (Wang et al., 2016) (RL2-DrAC). The
third method directly meta-learns the weights of a convolu-
tional network, without access to predefined transformations
(Meta-DrAC). Figure 1 gives an overview of UCB-DrAC.

We evaluate our method on the Procgen generalization
benchmark (Cobbe et al., 2019), which consists of 16
procedurally-generated environments with visual observa-
tions. Our results show that UCB-DrAC is the most effective
for automatically finding an augmentation, and is compara-
ble or better than using DrAC with the best augmentation
from a given set. UCB-DrAC also outperforms baselines
specifically designed to improve generalization in RL (Igl
et al., 2019; Lee et al., 2020; Laskin et al., 2020) on both
train and test.

2. Proximal Policy Optimization
Proximal Policy Optimization (PPO, Schulman et al.
(2017)) is an actor-critic algorithm that learns a policy πθ
and a value function Vθ with the goal of finding an optimal
policy for a given MDP. PPO alternates between sampling
data through interaction with the environment and maximiz-
ing a clipped surrogate objective function. One component
of the PPO objective is the policy gradient term, which is
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Figure 1. Overview of UCB-DrAC. A UCB bandit selects an image transformation (e.g. random-conv) and applies it to observations. The
augmented and original observations are passed to a modified actor-critic RL agent (DrAC) which uses them to improve generalization.

estimated using importance sampling:∑
a∈A

πθ(a|s)Âθold(s, a) = Ea∼πθold

[
πθ(a|s)
πθold(a|s)

Âθold(s, a)

]
,

(1)
where Â(·) is an estimate of the advantage function, πθold
is the behavior policy used to collect trajectories, and πθ is
the policy we want to optimize.

3. Automatic Data Augmentation for RL
3.1. Data Augmentation in RL

Image augmentation has been successfully applied in com-
puter vision for improving generalization on object clas-
sification tasks (Simard et al., 2003; Cireşan et al., 2011;
Ciregan et al., 2012; Krizhevsky et al., 2012). However,
as noted by Kostrikov et al. (2020), these tasks are invari-
ant to certain image transformations such as rotations or
flips. In contrast, RL tasks are not always invariant to such
augmentations (Kostrikov et al., 2020).

If transformations are naively applied to (some of the) ob-
servations in PPO’s buffer, as done in Cobbe et al. (2018);
Laskin et al. (2020), the PPO objective changes and equa-
tion (1) is replaced by∑
a∈A

πθ(a|s)Âθold(s, a) = Ea∼πθold

[
πθ(a|f(s))
πθold(a|s)

Âθold(s, a)

]
,

(2)
where f : S×H → S is the image transformation. However,
the right hand side of the above equation is not a sound
estimate of the left hand side because πθ(a|f(s)) 6= πθ(a|s),
since nothing constrains πθ(a|f(s)) to be close to πθ(a|s).
Moreover, one can define certain transformations f(·) that
result in an arbitrarily large ratio πθ(a|f(s))/πθ(a|s).

3.2. Policy and Value Function Regularization

Following (Kostrikov et al., 2020), we define an optimality-
invariant state transformation f : S × H → S as a map-
ping that preserves both the agent’s policy π and its value
function V such that V (s) = V (f(s, ν)) and π(a|s) =
π(a|f(s, ν)), ∀s ∈ S, ν ∈ H, where ν are the parameters
of f(·), drawn from the set of all possible parametersH.

To ensure that the policy and value functions are invariant
to these transformation of the input state, we propose an
additional loss term for regularizing the policy,

Gπ = KL [πθ(a|f(s, ν)) | π(a|s)] , (3)

as well as an extra loss term for regularizing the value func-
tion,

GV = (Vθ (f(s, ν))− V (s))
2
. (4)

Thus, our data-regularized actor-critic method, or DrAC,
maximizes the following objective:

JDrAC = JPPO − αr(Gπ +GV ) (5)

where αr is the weight of the regularization term.

The use of Gπ and GV ensures that the agent’s policy and
value function are invariant to the transformations induced
by various augmentations. Particular transformations can
be used to impose certain inductive biases relevant for the
task (e.g. invariance with respect to colors or textures).
In addition, Gπ and GV can be added to the objective of
any actor-critic algorithm with a discrete stochastic policy
(e.g. A3C (Mnih et al., 2013), TRPO (Schulman et al.,
2015), SAC (Haarnoja et al., 2018), IMPALA (Espeholt
et al., 2018)) without any other changes.

Note that when using DrAC, as opposed to the method
proposed by Laskin et al. (2020), we still use the correct im-
portance sampling estimate of the left hand side objective in
equation (1). This is because the transformed observations
f(s) are only used to compute the regularization losses Gπ
and GV , and thus are not used for the main PPO objective.
Hence, DrAC benefits from the regularizing effect of using
data augmentation, while mitigating the adverse effects it
has on the RL objective.

3.3. Automatic Data Augmentation

Since different tasks benefit from different kinds of data
augmentation, we would like to design a method that can
automatically find an effective augmentation for any given
task. In this section, we describe three approaches for doing
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this. In all of them, the augmentation learner is trained at the
same time as the agent learns to solve the task using DrAC.
Hence, the distribution of rewards varies significantly as the
agent improves, making the problem highly nonstationary.

Upper Confidence Bound. The problem of selecting a data
augmentation from a given set can be formulated as a multi-
armed bandit problem, where the action space is the set of
available transformations F = {f1, . . . , fn}. A popular
algorithm for multi-armed bandit problems is the Upper
Confidence Bound or UCB (Auer, 2002), which selects
actions according to the following policy:

ft = argmaxf∈F

[
Q(f) + c

√
log(t)

N(f)

]
(6)

where N(f) is the number of times transformation f has
been selected before time step t and c is UCB’s exploration
coefficient. We use a modified version of UCB to select
augmentations dynamically as the agent learns to solve the
task. Before the t-th DrAC update, we use equation (6)
to select an augmentation f . Then, we use equation (5)
to update the agent’s policy and value function. We also
update the counter: N(f) = N(f) + 1. Next, we collect
rollouts with the new policy and update the Q-function:
Q(f) = 1

K

∑t
i=t−K R(fi = f), which is computed as

a sliding window average of the past K mean returns ob-
tained by the agent after being updated using augmentation
f . We refer to this algorithm as UCB-DrAC. Note that
UCB-DrAC’s estimate of Q(f) differs from that of a typical
UCB algorithm which uses rewards from the entire history.
However, the choice of estimating Q(f) using only more
recent rewards is crucial due to the nonstationarity of the
problem.

Meta-Learning the Selection of an Augmentation. Alter-
natively, the problem of selecting a data augmentation from
a given set can be formulated as a meta-learning problem.
Here, we consider a meta-learner like the one proposed
by (Wang et al., 2016), which is an actor-critic architecture
parameterized by an LSTM (Hochreiter & Schmidhuber,
1997) that takes as inputs the previous reward and action (i.e.
augmentation). Before each DrAC update, the meta-learner
selects an augmentation, which is then used to update the
agent using equation (5). Then, we collect rollouts using
the new policy and update the meta-learner using the mean
return of these trajectories. We refer to this approach as
RL2-DrAC.

Meta-Learning the Weights of the Augmentation. An-
other approach for automatically finding an appropriate
augmentation is to directly learn the weights of a certain
transformation rather than selecting an augmentation from
a given set. In this work, we focus on meta-learning the
weights of a convolutional network which can be applied to
the observations to obtain a perturbed image (with the same

dimensions as the original observation). We meta-learn the
weights of this network using an approach similar to the
one proposed by (Finn et al., 2017) which we implement
using the higher library (Grefenstette et al., 2019). For each
agent update, we also perform a meta-update of the transfor-
mation function by splitting PPO’s buffer into training and
validation sets. We refer to this approach as Meta-DrAC.

4. Experiments
See Appendix A for a full description of the baselines, ex-
perimental setup, and hyperparameters used.

4.1. Generalization Ability

Table 1 shows train and test performance on Procgen. UCB-
DrAC significantly outperforms standard RL (PPO) and
other baselines designed to improve generalization in RL
(Rand-FM (Lee et al., 2020) and IBAC-SNI (Igl et al.,
2019)). Regularizing the policy and value function leads to
improvements over merely using data augmentation, and
thus the performance of DrAC is better than that of RAD
(both using the best augmentation for each game). Our ex-
periments show that the most effective way of automatically
finding an augmentation is UCB-DrAC. As expected, meta-
learning the weights of a transformation function parame-
terized by a CNN using Meta-DrAC performs reasonably
well on the games in which the random convolution aug-
mentation helps. But overall, Meta-DrAC and RL2-DrAC
are worse than UCB-DrAC. In addition, UCB is generally
more stable, easier to implement, and requires less fine-
tuning compared to meta-learning algorithms. See Figures 4
and 5 in the Appendix for a comparison of these three ap-
proaches on each game. Moreover, automatically selecting
the augmentation from a given set using UCB-DrAC per-
forms just as well or even better than a method that uses
the best augmentation for each task throughout the entire
training process. UCB-DrAC also achieves higher returns
than an ablation that uses a uniform distribution to select
an augmentation each time, Rand-DrAC. Similarly, UCB-
DrAC is better than Crop-DrAC, which uses crop for all
the games (which is the best augmentation for half of the
Procgen games).

4.2. Regularization Effect

In Section 3.1, we argued that additional regularization
terms are needed in order to make the use of data aug-
mentation in RL theoretically sound. However, one might
wonder if this problem actually appears in practice. Thus,
we empirically investigate the effect of regularizing the pol-
icy and value function. For this purpose, we compare the
performance of RAD and DrAC with grayscale and random
convolution augmentations on Chaser, Miner, and StarPilot.
Figure 2 shows that not regularizing the policy and value
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PPO-Normalized Return (%)
Train Test

Method Median Mean Median Mean

(a)
PPO 100.0 100.0 100.0 100.0
Rand-FM 91.83 87.26 90.16 75.5
IBAC-SNI 95.34 104.1 88.19 91.27

(b) DrAC (Best) 109.0 116.2 117.0 137.4
RAD (Best) 102.0 109.7 112.2 134.6

(c)
UCB-DrAC 100.3 116.2 115.3 139.2
RL2-DrAC 99.1 97.7 108.0 105.2
Meta-DrAC 79.7 79.3 85.3 86.0

(d)
Rand-DrAC 101.0 100.3 101.2 103.3
Crop-DrAC 98.7 113.3 112.6 129.8
UCB-RAD 93.1 104.2 103.1 126.9

Table 1. Train and test performance for the Procgen benchmark
(aggregated over all 16 tasks, 5 seeds). (a) compares PPO with
two baselines specifically designed to improve generalization in
RL and shows that they do not significantly help. (b) compares
using the best augmentation from our set with and without reg-
ularization, corresponding to DrAC and RAD respectively, and
shows that regularization improves performance on both train and
test. (c) compares different approaches for automatically finding
an augmentation for each task, namely using UCB or RL2 for
selecting the best transformation from a given set, or meta-learning
the weights of a convolutional network (Meta-DrAC). (d) shows
additional ablations: Rand-DrAC selects an augmentation using a
uniform distribution, Crop-DrAC uses image crops for all tasks,
and UCB-RAD is an ablation that does not use the regulariza-
tion losses. UCB-DrAC performs best on both train and test, and
achieves a return comparable with or better than DrAC (which
uses the best augmentation).

function with respect to the transformations used can lead
to drastically worse performance than vanilla RL methods,
further emphasizing the importance of these loss terms. In
contrast, using the regularization terms as part of the RL ob-
jective (as DrAC does) results in an agent that is comparable
or, in some cases, significantly better than PPO.

4.3. Automatic Augmentation

Our experiments indicate there is not a single augmenta-
tion that works best across all Procgen games, which is
consistent with the observations of (Laskin et al., 2020).
Moreover, our intuitions regarding the best transformation
for each game might be misleading. For exampler, at a
first sight, Climber appears to be somewhat similar to Coin-
Run or Jumper, but the augmentation that performs best on
Climber is color-jitter, while for CoinRun and Jumper is
random-conv. In contrast, Miner looks like a very different
game from CoinRun or Jumper, but they all have the same
best performing augmentation, namely random-conv. These
observations further underline the need for a method that
can automatically find the right augmentation for each task.

Table 1 along with Figures 4 and 5 in the Appendix compare
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Figure 2. Comparison between RAD and DrAC with the same
augmentations, grayscale and random convolution, on the test
environments of Chaser (left), Miner (center), and StarPilot (right).
While DrAC’s performance is comparable or better than PPO’s,
not using the regularization terms, i.e. using RAD, significantly
hurts performance relative to PPO. This is because, in contrast
with DrAC, RAD does not use a principled (importance sampling)
estimate of PPO’s objective.
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Figure 3. (a) Cumulative number of times UCB selects each aug-
mentation over the course of training for Ninja. Train and test
performance for PPO, DrAC with the best augmentation for each
game (color-jitter and crop, respectively), and UCB-DrAC for
Ninja (b) and Dodgeball (c). UCB-DrAC finds the most effective
augmentation from the given set and reaches the performance of
DrAC. Our methods improve both train and test performance.

different approaches for automatically finding an augmenta-
tion, showing that using a simple multi-armed bandit algo-
rithm like UCB performs best and reaches the asymptotic
performance obtained when the most effective transforma-
tion for each game is used throughout the entire training
process. Figure 3 illustrates an example of UCB’s policy
during training on Ninja, showing that it converges to always
selecting the most effective augmentation (i.e. color-jitter).

5. Discussion
In this work, we propose UCB-DrAC, a method for au-
tomatically finding an effective data augmentation for RL
tasks. Our approach enables the principled use of data aug-
mentation with actor-critic algorithms by regularizing the
policy and value functions with respect to state transfor-
mations. We show that UCB-DrAC avoids the theoretical
and empirical pitfalls typical in naive applications of data
augmentation in RL. Our approach improves training per-
formance by ∼ 16% and test performance by ∼ 40% on the
Procgen benchmark, relative to standard RL methods such
as PPO (Schulman et al., 2017). UCB-DrAC outperforms,
on both train and test environments, several methods specif-
ically designed to aid generalization in RL (Igl et al., 2019;
Lee et al., 2020; Laskin et al., 2020).
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