
Counterfactual Data Augmentation using Locally Factored Dynamics

Silviu Pitis 1 2 Elliot Creager 1 2 Animesh Garg 1 2

Abstract

Many dynamic processes, including common
scenarios in robotic control and reinforcement
learning (RL), involve a set of interacting sub-
processes. Though the subprocesses are not
independent, their interactions are sparse, and
the dynamics at any given time step can often
be decomposed into locally independent causal
mechanisms. Such local causal structures can
be leveraged to improve the sample efficiency
of sequence prediction and off-policy RL. We
formalize this by introducing local causal mod-
els (LCMs), which are induced from a global
causal model by conditioning on a subset of the
state space. We propose an approach to infer-
ring these structures given an object-oriented state
representation, as well as a novel algorithm for
model-free Counterfactual Data Augmentation
(CoDA). We find that CoDA significantly im-
proves the performance of RL agents in locally
factored tasks, including the batch-constrained
and goal-conditioned settings. Code available at
https://github.com/spitis/mrl.

1. Introduction
High-dimensional dynamical systems are often composed of
simple subprocesses that affect one another through sparse
interaction. If the subprocesses never interacted, an agent
could realize significant gains in sample efficiency by glob-
ally factoring the dynamics (Guestrin et al., 2003). In most
cases, however, the subprocesses do eventually interact and
so in practice we model the entire process using an unfac-
tored model. In this paper, we take advantage of the obser-
vation that locally—in the time between interactions—the
subprocesses are causally independent. By locally factoring
dynamic processes in this way, we can capture the benefits
of factorization even in presence of global interactions.

1University of Toronto 2Vector Institute. Correspondence
to: Silviu Pitis <spitis@cs.toronto.edu>, Elliot Creager <crea-
ger@cs.toronto.edu>.

Workshop on Inductive Biases, Invariances and Generalization in
RL (BIG) at ICML 2020. Copyright 2020 by the author(s).

Figure 1. Counterfactual Data Augmenation (CoDA). Given
factual samples (top row), the local causal structure lets us mix
and match factored subprocesses to form counterfactual samples.
The first proposal is rejected because one of its factual sources (the
blue ball) is not locally factored. The third proposal is rejected
because it is not itself factored. The second proposal is accepted,
and can be used as additional training data for an RL agent.

Consider a billiards game, where each ball is a separate
physical subprocess. Predicting the opening break is dif-
ficult because all balls are mechanically coupled by their
initial placement. So a dynamics model with dense coupling
amongst balls may seem sensible, as each ball has a non-
zero chance of colliding with the others. But at any given
timestep, interactions between balls are usually sparse.

One way to leverage sparse interactions between otherwise
disentangled entities is to use a structured state representa-
tion together with a graph neural network or other message
passing transition model (Kipf et al., 2019). In many cases,
however, the underlying processes are difficult to model,
and model-free (Wang et al., 2019) or task-oriented model-
based (Farahmand et al., 2017; Oh et al., 2017) approaches
are less biased and exhibit superior performance. In this
paper we argue that knowledge of whether or not local in-
teractions occur is useful in and of itself, and can be used to
generate causally-valid counterfactual data even in absence
of a dynamics model. We observe that if two trajectories
have the same local factorization in their transition dynamics
we can, under mild conditions, produce new counterfactual
data using our proposed Counterfactual Data Augmenta-
tion (CoDA) technique, wherein factorized subspaces of
observed trajectory pairs are swapped (Figure 1). This lets
us sample from a counterfactual distribution in an essen-
tially model-free way by stitching together subsamples of
factual trajectories. In the sequel, we formalize CoDA and
show how it can improve results in locally factored tasks.

Counterfactual Data Augmentation using Locally Factored Dynamics

Figure 2. A two-armed robot (left) might be modeled as an MDP whose S,A decompose into left and right subspaces: S = SL⊕SR,A =
AL ⊕AR. Because the arms can touch, the global causal model (center left) between time steps is fully connected, even though left-to-
right and right-to-left connections (dashed red edges) are rarely active. By restricting our attention to the subspace of states in which left
and right dynamics are independent we get a local causal model (center right) with two components that can be considered separately.

2. Local Causality in MDPs
Problem Setup We consider a Markov Decision Process
(MDP), described by tuple 〈S,A, P,R, γ〉 consisting of
the state space, action space, transition function, reward
function, and discount factor, respectively (Sutton & Barto,
2018). We denote individual states and actions by lowercase
s ∈ S, a ∈ A, and variables by uppercase S,A (e.g., s ∈
range(S) ⊆ S). In most non-trivial cases, the state s ∈
S can be described as an object hierarchy together with
global context. In this paper we consider MDPs with a
single, known top-level decomposition of the state space
S = S1 ⊕ · · · ⊕ Sn for fixed n. A might be similarly
decomposed: A = A1 ⊕ · · · ⊕ Am.

Given such decompositions, we may model time slice
(t, t+1) using a structural causal modelMt = 〈Vt, Ut,F〉
(Pearl, 2009) with directed acyclic graph (DAG) G, where:
• Vt = {V it[+1]}

2n+m
i=0 = {S1

t . . . S
n
t , A

1
t . . . A

m
t , S

1
t+1 . . .

Snt+1} are the nodes (variables) of G.
• Ut = {U it[+1]}

2n+m
i=0 is a set of noise variables, one

for each V i. We assume that noise variables at time
t + 1 are independent from other noise variables. We use
u = (u1, u2, . . . , u2n+m) to denote an instance of Ut.
• F = {f i}2n+mi=0 is a set of functions (“structural equa-
tions”) that map from U it[+1] × Pa(V it[+1]) to V it[+1], where
Pa(V it[+1]) ⊂ Vt\V

i
t[+1] are the parents of V it[+1] in G; hence

each f i is associated with the set of incoming edges to node
V it[+1] in G; see, e.g., Figure 2 (center).

While Vt, Ut, andMt are indexed by t, the structural equa-
tions f i ∈ F and causal graph G represent the global P and
apply at all times t. To reduce clutter, we drop the subscript
t on V , U , andM when no confusion can arise.

Assumption (Minimality). V j ∈ Pa(V i) iff there ex-
ists {ui, v−ij} with ui ∈ range(U i), v−ij ∈ range(V \
{V i, V j}) and pair (vj1, v

j
2) with vj1, v

j
2 ∈ range(V j) such

that vi1 = f i({ui, v−ij , vj1}) 6= f i({ui, v−ij , vj2}) = vi2.

Critically, we require that the domain of each f i and set of
edges in G is minimal (Peters et al. (2017), Remark 6.6).
Intuitively, minimality says that V j is a parent of V i if and

only if setting the value of V j can have an effect on the
child V i through structural equation f i. Given minimality,
we can think of edges in G as representing global causal
dependence. The distribution of Sit+1 is fully specified by
its parents Pa(Sit+1) and its noise variable Ui and we have
Sit+1 ⊥⊥ V j |Pa(Sit+1) for nodes V j 6∈ Pa(Sit+1). We call
an MDP with this structure a factored MDP (Kearns &
Koller, 1999). When edges in G are sparse, factored MDPs
admit more efficient solutions (Guestrin et al., 2003).

Limitations of Global Models Unfortunately, even if
states and actions are disentangled, in most practical scenar-
ios the DAG G is fully connected (or nearly so): since the f i

apply globally, so too does minimality, and edge (Sik, S
j
k+1)

at time k is present so long as there is a single instance—at
any time t, no matter how unlikely—in which Sit influences
Sjt+1. As a result, the factorized modelMt representing
global dynamics rarely offers an advantage over a simpler
model that treats states and actions as monolithic entities.

Local models Our key insight is that for each pair of
nodes (V it , S

j
t+1) with V it ∈ Pa(Sjt+1) in G, there of-

ten exists a large subspace S(j⊥⊥i) ⊂ S × A for which
Sjt+1 ⊥⊥ V it |Pa(Sjt+1) \ V it , (st, at) ∈ S(j⊥⊥i). E.g., in
case of a two-armed robot (Figure 2), there is a large sub-
space in which the two arms are too far apart to influence
each other physically. Thus, if we restrict our attention to
(st, at) ∈ S(j⊥⊥i), we can consider a local modelM(j⊥⊥i)

t

whose local DAG G(j⊥⊥i) is sparser than the global DAG
G, as the minimality assumption applied to G(j⊥⊥i) implies
there is no edge from V it to Sjt+1. More generally, for any
L ⊆ S ×A, we can induce the Local Causal Model (LCM)
MLt = 〈V Lt , ULt ,FL〉 with DAG GL from globalMt as:
• V Lt ={V L,it[+1]}

2n+m
i=0 , P (V L,it[+1]) = P (V it[+1]|(st,at)∈L).

• ULt ={UL,it[+1]}
2n+m
i=0 , P (UL,it[+1])=P (U it[+1]|(st,at)∈L).

• FL = {fL,i}2n+mi=0 , where fL,i = f i|L. Due to minimal-
ity, the signature of fL,i may shrink.

Leveraging LCMs To answer the counterfactual ques-
tion, “what might the transition at time t have looked like if

Counterfactual Data Augmentation using Locally Factored Dynamics

Figure 3. Four instances of CoDA. First: Goal relabeling (Kaelbling, 1993) augments transitions with counterfactual goals. Second:
Visual feature augmentation (Andrychowicz et al., 2020) changes visual features SVt that the designer knows do not impact the physical
state SPt+1. Third: Dyna (Sutton, 1991) augments real states with new actions and resamples the next state using a dynamics model.
Fourth (ours): Given two transitions that share local causal structures, we propose to swap connected components to form new transitions.

component Sit had value x instead of value y?”, we would
ordinarily apply Pearl’s do-calculus to global causal model
M to obtain submodel Mdo(Si

t=x)
= 〈V,U,Fx〉, where

Fx = F \ f i ∪ {Sit = x} and incoming edges to Sit are
removed from Gdo(Si

t=x)
(Pearl, 2009). The component dis-

tributions at time t + 1 can be computed by reevaluating
each function f j that depends on Sit . When Sit has many
children (as is often the case in the global G), this requires
one to estimate many structural equations {f i}. But if both
the original value of St (with Sit = y) and its new value
(with Sit = x) are in the set L, the intervention is “within
the bounds” of local modelML and we can instead work
directly with local submodel MLdo(Si

t=x)
(defined accord-

ingly). The validity of this follows from the definitions:
since fL,j = f j |L for all of Sit’s children, the nodes V kt
for k 6= i at time t are held fixed, and the noise variables at
time t + 1 are unaffected, the distribution at time t + 1 is
the same under both models. When Sit has fewer children
in ML than in M, this reduces the number of structural
equations that need to be considered.

3. Counterfactual Data Augmentation
Although LCMs are a general formalism that may have sev-
eral applications, we focus our present effort on improving
off-policy learning in RL by exploiting causal independence
in local models for Counterfactual Data Augmentation
(CoDA). CoDA augments real data by making counterfac-
tual modifications to a subset of the causal factors at time
t, leaving the rest of the factors untouched. Following the
logic outlined in the Subsection 2, this can understood as
manufacturing “fake” data samples using the counterfactual
modelM[L]

do(Si...j
t =x)

, where we modify Si...jt and resample
their children. While this is always possible using a model-
based approach if we have good models of the structural
equations, it is particularly nice when the causal mecha-
nisms are independent, as we can use environment samples
for model-free counterfactual reasoning.

Definition. The causal mechanisms of Gi,Gj ⊂ G are in-
dependent when Gi and Gj are disconnected in G.

Global independence relations have been used for CoDA by
past work on goal relabeling (Kaelbling, 1993) and visual
feature augmentation (Laskin et al., 2020); see Figure 3.

We propose a novel form of model-free CoDA that uses
knowledge of local independence relationships. In particu-
lar, we observe that whenever an environment transition is
within the bounds of some local modelML whose graph
GL has the locally independent causal mechanism Gi as a
disconnected subgraph, that transition contains an unbiased
sample from Gi. Thus, given two transitions in L, we may
mix and match samples of Gi to generate counterfactual
data, so long as the resulting transitions are also in L.

Remark 3.1. If we have n independent samples from sub-
space L whose graph GL has m connected components, we
have n choices for each of the m components, for a total of
nm CoDA samples—an exponential increase in data!

Implementing Model-Free CoDA We implement CoDA
as a function of two factual transitions and a mask function
M(st, at) : |S| × |A| → {0, 1}(|S|+|A|)×|S| that returns
the adjacency matrix of the sparsest local causal graph GL
such that L is a neighborhood of (st, at). We apply M to
each transition to obtain local masks m1 and m2, compute
their connected components, and swap independent compo-
nents Gi and Gj between transitions to get a CoDA proposal.
We then apply M to counterfactual (s̃t, ãt) to validate the
proposal—if counterfactual m̃ shares graph partitions with
m1 and m2, we accept the proposal as a CoDA sample. See
Appendix A for pseudocode and more technical exposition.

Inferring local factorization While the ground truth
mask M may be available in rare cases as part of a sim-
ulator, the general case either requires a domain expert to
specify an approximate causal model or requires the agent to
learn the local factorization from data. To learn the masking
function, we consider a single-head set transformer archi-
tecture (Lee et al., 2018), which is trained to model for-
ward dynamics using an L2 prediction loss, but used by
the agent to infer local factorization (not to directly sample
future states as is typical in model-based RL). We found this

Counterfactual Data Augmentation using Locally Factored Dynamics

|D| Real data MBPO Ratio of Real:CoDA [:MBPO] data (ours)
(1000s) 1R 1R:1M 1R:1C 1R:3C 1R:5C 1R:3C:1M

25 13.2± 0.7 18.5± 1.5 43.8± 2.8 40.9± 2.5 38.4± 4.9 46.8± 3.1
50 22.8± 3.0 36.6± 4.3 66.6± 3.8 64.4± 3.1 62.5± 3.5 70.4± 3.8
75 43.2± 4.9 46.0± 4.7 73.4± 2.8 76.7± 2.6 75.0± 3.4 74.6± 3.2

100 63.0± 3.1 66.4± 4.9 77.8± 2.0 82.7± 1.5 76.6± 3.0 73.7± 2.9
150 77.4± 1.2 72.6± 5.6 82.2± 1.8 85.8± 1.4 84.2± 1.0 79.7± 3.6
250 78.2± 2.7 77.9± 2.4 85.0± 2.9 87.8± 1.8 87.0± 1.0 78.3± 4.9

Table 1. Batch RL (10 seeds): Mean success (± standard error, estimated using 1000 bootstrap resamples) on Pong environment. CoDA
with learned masking function more than doubles the effective data size, resulting in a 3x performance boost at smaller data sizes.

produced reasonable results in the tested domains (below).
Once trained, the local network mask M(st, at) is found by
computing the matrix product of the attention masks at each
layer: M(st, at) = ΠL

`=1M`(st, at), which generalizes the
global network masks of MADE (Germain et al., 2015) and
GraN-DAG (Lachapelle et al., 2019). See Appendix D for
details and an empirical evaluation of our approach.

4. Experiments
We evaluate CoDA in the batch and goal-conditioned set-
tings, in each case finding that CoDA significantly improves
agent performance as compared to non-CoDA baselines.
See Appendix C for specific details and additional results.

Batch RL A natural setting for CoDA is batch RL, where
an agent has access to an existing transition-level dataset,
but cannot collect more data via exploration (Fujimoto et al.,
2018a). This makes any additional, high quality data in-
valuable. Another reason why CoDA is attractive in this
setting is that there is no a priori reason to prefer the given
batch data distribution to a counterfactual one. We use a
continuous control Pong environment where the agent must
hit the ball past the opponent, receiving reward of +1 when
the ball is behind the opponent’s paddle, -1 when the ball is
behind the agent’s paddle, and 0 otherwise. Since our trans-
former model performed poorly when used as a dynamics
model, our Dyna baseline adopts a state-of-the-art architec-
ture (Janner et al., 2019) that employs a 7-model ensemble
(MBPO). We collect datasets of up to 250,000 samples from
an pretrained policy with added noise. For each dataset, we
train both mask and reward functions (and in case of MBPO,
the dynamics model) on the provided data and use them to
generate different amounts of counterfactual data. We train
the same TD3 agent on the expanded datasets in batch mode
for 500,000 optimization steps. The results in Table 1 show
that with only 3 state factors (two paddles and ball), CoDA
approximately doubles the effective data size.

Goal-conditioned RL As HER (Andrychowicz et al.,
2017) is an instance of prioritized CoDA that greatly im-
proves sample efficiency in sparse-reward tasks, can our

Figure 4. Goal-conditioned RL (5 seeds): In FetchPush and
the challenging Slide2 environment, a HER agent whose dataset
has been enlarged with CoDA achieves twice the sample efficiency.

unprioritized CoDA algorithm further improve HER agents?
We use HER to relabel goals on real data only, relying on
random CoDA-style goal relabeling for CoDA data. We
obtain state-of-the-art results in FetchPush-v1 (Plappert
et al., 2018) and show that CoDA also accelerates learn-
ing in a novel and significantly more challenging Slide2
environment, where the agent must slide two pucks onto
their targets (Figure 4). For this experiment, we specified a
heuristic mask using domain knowledge (“objects are dis-
entangled if more than 10cm apart”) that worked in both
FetchPush and Slide2 despite different dynamics.

5. Future work
There are several interesting avenues for future work. First,
we have applied CoDA in an unprioritized fashion, but past
work (Schaul et al., 2015b) suggests there is significant ben-
efit to prioritization. Second, we have applied CoDA model-
free, but our LCM formalism allows for mixing model-free
and model-based reasoning, which might further improve
results. Third, we would like to deploy CoDA in partially ob-
servable, entangled settings (e.g. RL from pixels) with mul-
tiple dynamic, multi-level decompositions (Higgins et al.,
2018; Esmaeili et al., 2019). Unsupervised learning of fac-
torized latent representations is an active area of research
(Dundar et al., 2020; Locatello et al., 2018), and it would be
interesting to combine these methods with CoDA. Finally,
it would be interesting to explore applications of our LCM
framework to other areas such as interpretability (Lyu et al.,
2019), exploration (Wang & Hayden, 2019), and off-policy
evaluation (Thomas & Brunskill, 2016).

Counterfactual Data Augmentation using Locally Factored Dynamics

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R.,

Welinder, P., McGrew, B., Tobin, J., Abbeel, O. P., and Zaremba,
W. Hindsight experience replay. In Advances in neural infor-
mation processing systems, pp. 5048–5058, 2017.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R.,
McGrew, B., Pachocki, J., Petron, A., Plappert, M., Powell, G.,
Ray, A., et al. Learning dexterous in-hand manipulation. The
International Journal of Robotics Research, 39(1):3–20, 2020.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., and Kalai,
A. T. Man is to computer programmer as woman is to home-
maker? debiasing word embeddings. In Advances in neural
information processing systems, pp. 4349–4357, 2016.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., and Zaremba, W. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Buesing, L., Weber, T., Zwols, Y., Racaniere, S., Guez, A., Lespiau,
J.-B., and Heess, N. Woulda, coulda, shoulda: Counterfactually-
guided policy search. International Conference on Learning
Representations, 2019.

Diuk, C., Cohen, A., and Littman, M. L. An object-oriented repre-
sentation for efficient reinforcement learning. In Proceedings
of the 25th international conference on Machine learning, pp.
240–247, 2008.

Dundar, A., Shih, K. J., Garg, A., Pottorf, R., Tao, A., and
Catanzaro, B. Unsupervised disentanglement of pose, appear-
ance and background from images and videos. arXiv preprint
arXiv:2001.09518, 2020.

Esmaeili, B., Wu, H., Jain, S., Bozkurt, A., Siddharth, N., Paige,
B., Brooks, D. H., Dy, J., and Meent, J.-W. Structured disentan-
gled representations. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 2525–2534, 2019.

Farahmand, A.-m., Barreto, A., and Nikovski, D. Value-aware loss
function for model-based reinforcement learning. In Artificial
Intelligence and Statistics, pp. 1486–1494, 2017.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and White-
son, S. Counterfactual multi-agent policy gradients. In Thirty-
second AAAI conference on artificial intelligence, 2018.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep re-
inforcement learning without exploration. arXiv preprint
arXiv:1812.02900, 2018a.

Fujimoto, S., Van Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. arXiv preprint
arXiv:1802.09477, 2018b.

Garg, S., Perot, V., Limtiaco, N., Taly, A., Chi, E. H., and Beutel, A.
Counterfactual fairness in text classification through robustness.
In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, pp. 219–226, 2019.

Germain, M., Gregor, K., Murray, I., and Larochelle, H. Made:
Masked autoencoder for distribution estimation. In Interna-
tional Conference on Machine Learning, pp. 881–889, 2015.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Ben-
gio, Y., and Schölkopf, B. Recurrent independent mechanisms.
arXiv preprint arXiv:1909.10893, 2019.

Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. Efficient
solution algorithms for factored mdps. Journal of Artificial
Intelligence Research, 19:399–468, 2003.

Hallak, A., Schnitzler, F., Mann, T., and Mannor, S. Off-policy
model-based learning under unknown factored dynamics. In
International Conference on Machine Learning, pp. 711–719,
2015.

Hendrycks, D. and Gimpel, K. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415, 2016.

Higgins, I., Sonnerat, N., Matthey, L., Pal, A., Burgess, C. P.,
Bošnjak, M., Shanahan, M., Botvinick, M., Hassabis, D., and
Lerchner, A. SCAN: Learning hierarchical compositional visual
concepts. In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?
id=rkN2Il-RZ.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. In Advances
in Neural Information Processing Systems, pp. 12498–12509,
2019.

Kaelbling, L. P. Learning to achieve goals. In IJCAI, pp. 1094–
1099. Citeseer, 1993.

Kearns, M. and Koller, D. Efficient reinforcement learning in
factored mdps. In IJCAI, volume 16, pp. 740–747, 1999.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T., van der Pol, E., and Welling, M. Contrastive learning
of structured world models. arXiv preprint arXiv:1911.12247,
2019.

Klimov, O. and Schulman, J. Roboschool, 2017.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in
neural information processing systems, pp. 1097–1105, 2012.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien,
S. Gradient-based neural dag learning. arXiv preprint
arXiv:1906.02226, 2019.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas,
A. Reinforcement learning with augmented data. arXiv preprint
arXiv:2004.14990, 2020.

Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., and Teh, Y. W.
Set transformer: A framework for attention-based permutation-
invariant neural networks. arXiv preprint arXiv:1810.00825,
2018.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement
learning: Tutorial, review, and perspectives on open problems.
arXiv preprint arXiv:2005.01643, 2020.

Counterfactual Data Augmentation using Locally Factored Dynamics

Li, R., Jabri, A., Darrell, T., and Agrawal, P. Towards practi-
cal multi-object manipulation using relational reinforcement
learning. arXiv preprint arXiv:1912.11032, 2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., and Wierstra, D. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf,
B., and Bachem, O. Challenging common assumptions in the
unsupervised learning of disentangled representations. arXiv
preprint arXiv:1811.12359, 2018.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch,
I. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in neural information processing
systems, pp. 6379–6390, 2017.

Lu, C., Schölkopf, B., and Hernández-Lobato, J. M. Deconfound-
ing reinforcement learning in observational settings. arXiv
preprint arXiv:1812.10576, 2018.

Lyu, D., Yang, F., Liu, B., and Gustafson, S. Sdrl: Interpretable and
data-efficient deep reinforcement learning leveraging symbolic
planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 2970–2977, 2019.

Madumal, P., Miller, T., Sonenberg, L., and Vetere, F. Explainable
reinforcement learning through a causal lens. arXiv preprint
arXiv:1905.10958, 2019.

Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., and Popovic,
Z. Offline policy evaluation across representations with ap-
plications to educational games. In AAMAS, pp. 1077–1084,
2014.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. Safe
and efficient off-policy reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 1054–1062, 2016.

Oh, J., Singh, S., and Lee, H. Value prediction network. In
Advances in Neural Information Processing Systems, pp. 6118–
6128, 2017.

Park, J. H., Shin, J., and Fung, P. Reducing gender bias in abusive
language detection. arXiv preprint arXiv:1808.07231, 2018.

Pearl, J. Causal inference in statistics: An overview. Statistics
surveys, 3:96–146, 2009.

Perez, L. and Wang, J. The effectiveness of data augmentation
in image classification using deep learning. arXiv preprint
arXiv:1712.04621, 2017.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. MIT press,
2017.

Pitis, S., Chan, H., and Ba, J. Protoge: Prototype goal encodings
for multi-goal reinforcement learning. The 4th Multidisciplinary
Conference on Reinforcement Learning and Decision Making
(RLDM2019), 2019.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker,
B., Powell, G., Schneider, J., Tobin, J., Chociej, M., Welin-
der, P., et al. Multi-goal reinforcement learning: Challenging
robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Rezende, D. J., Danihelka, I., Papamakarios, G., Ke, N. R., Jiang,
R., Weber, T., Gregor, K., Merzic, H., Viola, F., Wang, J.,
et al. Causally correct partial models for reinforcement learning.
arXiv preprint arXiv:2002.02836, 2020.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal value
function approximators. In International conference on machine
learning, pp. 1312–1320, 2015a.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015b.

Sutton, R. S. Dyna, an integrated architecture for learning, plan-
ning, and reacting. ACM Sigart Bulletin, 2(4):160–163, 1991.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An intro-
duction. MIT press, 2018.

Thomas, P. and Brunskill, E. Data-efficient off-policy policy eval-
uation for reinforcement learning. In International Conference
on Machine Learning, pp. 2139–2148, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all
you need. In Advances in neural information processing systems,
pp. 5998–6008, 2017.

Wang, M. Z. and Hayden, B. Y. Monkeys are curious about
counterfactual outcomes. Cognition, 189:1–10, 2019.

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois,
E., Zhang, S., Zhang, G., Abbeel, P., and Ba, J. Bench-
marking model-based reinforcement learning. arXiv preprint
arXiv:1907.02057, 2019.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning, 8(3-4):
279–292, 1992.

Watters, N., Matthey, L., Bosnjak, M., Burgess, C. P., and Lerch-
ner, A. Cobra: Data-efficient model-based rl through unsuper-
vised object discovery and curiosity-driven exploration. arXiv
preprint arXiv:1905.09275, 2019.

Weber, T., Heess, N., Buesing, L., and Silver, D. Credit assignment
techniques in stochastic computation graphs. arXiv preprint
arXiv:1901.01761, 2019.

Wu, C., Rajeswaran, A., Duan, Y., Kumar, V., Bayen, A. M.,
Kakade, S., Mordatch, I., and Abbeel, P. Variance reduction
for policy gradient with action-dependent factorized baselines.
arXiv preprint arXiv:1803.07246, 2018.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D., Lillicrap, T., Lock-
hart, E., et al. Relational deep reinforcement learning. arXiv
preprint arXiv:1806.01830, 2018.

Zhu, G., Huang, Z., and Zhang, C. Object-oriented dynamics pre-
dictor. In Advances in Neural Information Processing Systems,
pp. 9804–9815, 2018.

Counterfactual Data Augmentation using Locally Factored Dynamics

Algorithm 1 Mask-based Counterfactual Data Augmentation (CoDA)

function CODA(transition t1, transition t2):
s1,a1,s1’← t1
s2,a2,s2’← t2
m1,m2← MASK(s1,a1),MASK(s2,a2)
D1← COMPONENTS(m1)
D2← COMPONENTS(m2)
d← random sample from (D1 ∩ D2)
s̃,ã, s̃’← copy(s1,a1,s1’)
s̃[d],ã[d], s̃’[d]← s2[d],s2[d],s2’[d]
D̃← COMPONENTS(MASK(s̃,ã))
return (s̃,ã, s̃’) if d ∈ D̃ else ∅

function MASK(state s, action a):
Returns (|S| + |A|) × (|S|) matrix indicating if the next
state components (columns) locally depend on the state and
action components (rows).

function COMPONENTS(mask m):
Using the mask as the adjacency matrix for GL (with dummy
columns for next action), finds the set of connected com-
ponents C = {Cj}, and returns the set of independent
components
D = {Gi =

⋃
k C

i
k | Ci ⊂ powerset(C)}.

A. Additional details on CoDA Algorithm
The pseudo-code for our mask-based CoDA algorithm is in
Algorithm 1. We apply this to different transition pairs to
produce novel counterfactual samples each time.

Note that masks m1, m2 and the counterfactual mask m̃
correspond to different neighborhoods L1,L2 and L̃, so it
is not clear that we are “within the bounds” of any model
ML as was required in Section 2 for valid counterfactual
reasoning. To correct this discrepancy we use the following
proposition and additionally require the causal mechanisms
for the independent components Gi and Gj to share structural
equations in each local neighborhood: fL1,i = fL2,i =

f L̃,i (and similarly for j). To see why this is not trivially
true, imagine there are two rooms, one of which is icy. In
either room the ground conditions are locally independent of
movement dynamics, but not so if we consider their union.
Using Proposition 1 below, this makes our reasoning valid
in the local subspace L∗ = L1 ∪ L2 ∪ L̃.
Lemma 1. If V j ∈ PaL(V i) in DAG GL of (local) causal
modelML, and L ⊂ X , then V j ∈ PaX (V i) in DAG GX

corresponding to causal modelMX .

Proof. By minimality, there exist {ui, v−j , vj1} and
{ui, v−j , vj2} with v−j ∈ PaL(V i) \ V j for which
f i({ui, v−j , vj1}) 6= f i({ui, v−j , vj2}). Expand {v−j , vj1}
and {v−j , vj2} to (s1, a1), (s2, a2) ∈ L (with any values of
other components). But L ⊂ X , so (s1, a1), (s2, a2) ∈
X and it follows from minimality in X that V j ∈
PaX (V i).

Corollary 1. If L ⊂ X , GL is sparser (has fewer edges)
than GX .

Proposition 1. The mechanisms represented by Gi,Gj ⊂ G
are independent in GL1∪L2 iff Gi and Gj are independent in
both GL1 and GL2 , and fL1,i = fL2,i, fL1,j = fL2,j .

Proof. (⇒) If Gi and Gj are independent in GL1∪L2 , inde-
pendence in GL1 and GL2 follows from Corollary 1. That
fL1,i = fL2,i (and fL1,j = fL2,j), on their shared do-
main, follows since each is a restriction of the same function
fL1∪L2,i (or fL1∪L2,j).

(⇐) Suppose Gi and Gj are independent in GL1 and GL2

but not GL1∪L2 . By the definition of independence ap-
plied to GL1∪L2 , we have that, without loss of general-
ity, there is a Vi ∈ Gi, Vj ∈ Gj with Vj ∈ PaL1∪L2(Vi).
Then, from the definition of minimality, it follows that there
exist (s1, a1), (s2, a2) ∈ L1 ∪ L2 that differ only in the
value of Vj , and ui ∈ range(Ui) for which f i(s1, a1, ui) 6=
f i(s2, a2, ui).

Clearly, if (s1, a1) and (s2, a2) are both in L1 (or L2), there
will be an edge from Vj to Vi in GL1 (or GL2) and the
claim follows by contradiction. Thus, the only interest-
ing case is when, without loss of generality, (s1, a1) ∈ L1

and (s2, a2) ∈ L2. The key observation is that (s1, a1)
and (s2, a2) differ only in the value of node Vj 6∈ Gi:
since Gi is an independent causal mechanism in both GL1

and GL2 and the parents of Vi take on the same values
in each, we have that f i(s1, a1, ui) = f i,L1(s1, a1, ui) =
f i,L2(s2, a2, ui) = f i(s2, a2, ui) and the claim follows by
contradiction.

B. Related Work
Factored MDPs (Guestrin et al., 2003; Hallak et al., 2015;
Weber et al., 2019) consider MDPs where state variables
are only influenced by a fixed subset of “parent” variables
at the previous timestep. Object-oriented and relational ap-
proaches to RL and sequence prediction (Diuk et al., 2008;
Goyal et al., 2019; Kipf et al., 2019; Li et al., 2019; Zam-
baldi et al., 2018; Zhu et al., 2018) represent the dynamics
as a set of interacting entities. Factored action spaces and
policies have been used to formulate dimension-wise policy
gradient baselines in both standard and multi-agent settings
(Foerster et al., 2018; Lowe et al., 2017; Wu et al., 2018).

A growing body of work applies causal reasoning the RL set-
ting to improve sample efficiency, interpretability and learn
better representations (Lu et al., 2018; Madumal et al., 2019;
Rezende et al., 2020). Particularly relevant is the work by
Buesing et al. (2019), which improves sample efficiency by
using a causal model to sample counterfactual trajectories,
thereby reducing variance of off-policy gradient estimates

Counterfactual Data Augmentation using Locally Factored Dynamics

in a guided policy search framework. These counterfactuals
use coarse-grained representations at the trajectory level,
while our approach uses factored representations within a
single transition.

Batch RL (Levine et al., 2020; Fujimoto et al., 2018a; Man-
del et al., 2014) and more generally off-policy RL (Watkins
& Dayan, 1992; Munos et al., 2016) are counterfactual by
nature, and are particularly important when it is costly or
dangerous to obtain on-policy data (Thomas & Brunskill,
2016). The use of counterfactual goals to accelerate learning
goal-conditioned RL (Kaelbling, 1993; Schaul et al., 2015a;
Plappert et al., 2018) is what inspired our local CoDA algo-
rithm.

Data augmentation is also widely used in supervised learn-
ing, and is considered a required best practice in high di-
mensional problems (Krizhevsky et al., 2012; Laskin et al.,
2020; Perez & Wang, 2017). Heuristics for data augmenta-
tion often encode a causal invariance statement with respect
to certain perturbations on the inputs, which is relevant to
applications where fairness is a concern, as counterfactuals
can be used to achieve robust performance and debias data
(Garg et al., 2019; Park et al., 2018; Bolukbasi et al., 2016).

C. Additional Experiment Details
This section provides training details for the experiments
discussed in Section 4 as well as some additional results.

Standard online RL We extend
Spriteworld (Watters et al.,
2019) to construct a “bouncing ball”
environment (right), that consists of
multiple objects (sprites) that move
and collide within a confined 2D
canvas. We use tasks of varying dif-
ficulty, where the agent must nav-
igate N ∈ {1, 2, 3, 4} of 4 sprites to their fixed target po-
sitions. The agent receives reward of 1/N for each of the
N sprites placed; e.g., the hardest task (Place 4) gives 1/4
reward for each of 4 sprites placed. For each task, we use
CoDA to expand the replay buffer of a TD3 agent (Fuji-
moto et al., 2018b) by about 8 times. We compare CoDA
with a ground truth masking function (available via the
Spriteworld environment) and learned masking func-
tion to the base TD3 agent, as well as a Dyna agent that
generates additional training data by sampling from a model.
For fair comparison, we use the same transformer used for
CoDA masks for Dyna, which we pretrain using approxi-
mately 42,000 samples from a random policy. As in HER,
we assume access to the ground truth reward function to
relabel the rewards. The results in Figure 5 show that both
variants of CoDA significantly improve sample complexity
over the baseline. By contrast, the Dyna agent suffers from

model bias, even though it uses the same model as CoDA.
Additional details are included below.

Implementation We work with the original TD3 code-
base, architecture, and hyperparameters (except batch size;
see below), and focus our efforts solely on modifying the
agent’s training distribution.

Environment We extend the base Spriteworld framework
(Watters et al., 2019) with (1) basic collisions (to induce a
local factorization / so that a global factorization will not
work), (2) a new continuous action space (2-dimensional),
(3) a disentangled state renderer that returns the position and
velocity of each sprite (a total of 16-dimensions in tasks with
four sprites), (4) a mask renderer that returns the ground
truth masking function (allows us to evaluate our masking
function in Appendix D), and (5) a suite of partial and sparse
reward tasks that we use for experiments. These extensions
will included with the release of our code.

Data augmentation Every 1000 environment steps, we
sample 2000 pairs of random transitions from the agent’s
replay buffer, and apply CoDA to produce a maximum of
5 unique CoDA samples per pair. We apply two forms of
CoDA, using (1) an oracle / ground truth mask function
that we back out of the simulator, and (2) the mask of a
pre-trained transformer model (see Section D). The mask
function was trained using approximately 42,000 samples
from a random policy (5/6 of 50,000, with the rest of the data
used for validation). CoDA samples are added to a second
CoDA replay buffer. For purposes of this experiment both
buffers are have effectively infinite capacity (they are never
filled). During training, the agent’s batches are sampled
proportionally from the real and CoDA replay buffers (this
means that approximately 7/8 of the data that the agent
trains on is counterfactual).

Baselines In addition to the base TD3 agent and CoDA,
we also use the transformer model that is used as a mask
function to generate data by performing forward rollouts
with a random policy, as in Dyna (Sutton, 1991). So that
this baseline produces approximately the same number of
samples as CoDA with the learned mask, we roll the model
out for 5 steps from 1500 random samples from the replay
buffer, again every 1000 environment steps. This produces
7500 model-based samples every 1000 environment steps.

Use of the transformer mask function requires setting the
threshold value τ , which we do by monitoring accuracy and
F1 scores for sparsity prediction (as discussed in Appendix
D) on validation data, ultimately using the value τ = 0.05.

Batch Size Since CoDA samples are plentiful we increase
the agent’s batch size from 256 to 1000 to allow it to train on

Counterfactual Data Augmentation using Locally Factored Dynamics

Figure 5. Standard RL (3 seeds, partial reward): CoDA with the ground truth mask performs best, validating our basic idea. CoDA with
a pretrained model also offers a significant early boost in sample efficiency and maintains its lead over the base TD3 agent throughout
training. Using the same model to generate data directly (a la Dyna, Sutton (1991)) performs poorly, suggesting significant model bias.

Figure 6. Standard RL (3 seeds, dense reward): As in the partial reward case (Figure 5), we observe that CoDA agents outperform the
other agents (except in Place 4, where no agent achieves any reward).

more environment samples in the same number of training
steps. We found that this slightly improved the performance
of the base TD3 agent. An increase in batch size also allows
the agent to see more of its own on-policy data in the face
of many typically off-policy CoDA samples.

Additional results in sparse reward task variants In
addition to the partial reward tasks described above, we
also tested CoDA in four sparse reward tasks of varying
difficulty. These are the same as the partial reward tasks,
except that a sparse reward of 1 is granted only when all N
sprites are in their target locations. While these tasks were
much harder (and perhaps impossible in the case of Place
4 due to moving sprites), as shown in Figure 6, the CoDA
agents maintain a clear advantage.

C.1. Batch RL

Here we detail the procedure used in the Batch RL experi-
ments in the Pong environment.

Implementation This experiment works with a different
codebase than the Spriteworld experiment, in order to sim-
plify the use of CoDA in a Batch RL setting. Our experiment
first builds the agent’s dataset (consisting of real data, dyna
data and/or CoDA data), then instantiates a TD3 agent by
filling its replay buffer with the dataset. The replay buffer

is always expanded to include the entire enlarged dataset
(for the 5x CoDA ratio at 250,000 data size this means the
buffer has 1.5E6 experiences). The agent is run for 500,000
optimization steps.

Hyperparameters We used similar hyperparameters to
the original TD3 codebase, with the following differences:

• We use a discount factor of γ = 0.98 instead of 0.99.

• Since Pong is a sparse reward task with γ = 0.98, we
clip critic targets to (−50, 50).

• We use networks of size (128, 128) instead of
(256, 256).

• We use a batch size of 1000.

Environment We base our Pong environment on
RoboSchoolPong-v1 (Klimov & Schulman, 2017).
The original environment allowed the ball to teleport back
to the center after one of the players scored, offered a small
dense reward signal for hitting the ball, and included a stray
“timeout” feature in the agent’s state representation. We
fix the environment so that the ball does not teleport, and
instead have the episode reset every 150 steps, and also 10
steps after either player scores. The environment is treated
as continuous and never returns a done signal that is not

Counterfactual Data Augmentation using Locally Factored Dynamics

also accompanied by a TimeLimit.truncated indica-
tor (Brockman et al., 2016). We change the reward to be
strictly sparse, with reward of ±1 given when the ball is be-
hind one of the players’ paddles. Finally, we drop the stray
“timeout” feature, so that the state space is 12-dimensional,
where each set of 4 dimensions is the x-position, y-position,
x-velocity, and y-velocity of the corresponding object (2
paddles and one ball).

Training the CoDA model Without access to a ground
truth mask, we needed to train a masking function D to iden-
tify local disentanglement. We also forewent the ground
truth reward, instead training our own reward classifier. In
each case we used the batch dataset given, and so we trained
different models for each random seed. For our masking
model, we stacked two single-head transformer blocks (with-
out positional encodings) and used the product of their atten-
tion masks as the mask. Each block consists of queryQ, key
K, and value V networks that each have 3-layers of 256 neu-
rons each, with the attention computed as usual (Vaswani
et al., 2017; Lee et al., 2018). The transformer is trained to
minimize the L2 error of the next state prediction given the
current state and action as inputs. The input is disentangled,
and so has shape (batch_size, num_components,
num_features). In each row (component representa-
tion) of each sample, features corresponding to other com-
ponents are set to zero. The transformer is trained for 2000
steps with a batch size of 256, Adam optimizer (Kingma
& Ba, 2014) with learning rate of 3e-4 and weight decay
of 1e-5. For our reward function we use a fully-connected
neural network with 1 hidden layer of 128 units. The reward
network accepts an (s, a, s′) tuple as input (not disentan-
gled) and outputs a softmax over the possible reward values
of [−1, 0, 1]. It is trained for 2000 steps with a batch size of
512, Adam optimizer (Kingma & Ba, 2014) with learning
reate of 1e-3 and weight decay of 1e-4. All hyperparameters
were rather arbitrary (we used the default setting, or in case
it did not work, the first setting that gave reasonable results,
as was determined by inspection). To ensure that our model
and reward functions are trained appropriately (i.e., do not
diverge) for each seed, we confirm that the average loss of
the CoDA model is below 0.005 at the training and that
the average loss of the reward model is below 0.1, which
values were found by inspection of a prototype run. These
conditions were met by all seeds.

When used to produce masks, we chose a threshold of
τ = 0.02 by inspection, which seemed to produce reason-
able results. A more principled approach would do cross-
validation on the available data, as we did for Spriteworld
(Appendix D).

Tested configurations We considered the following con-
figurations:

1. Real data only.

2. CoDA + real data: after training the CoDA model, we
expand the base dataset by either 2, 4 or 6 times.

3. Dyna (using CoDA model): after training the CoDA
model, we use it as a forward dynamics model instead
of for CoDA; we tried 1-step and 5-step rollouts with
random actions from random states in the given dataset
to expand the dataset by 2x. We found that this hurt
performance at all data sizes (not shown).

4. Dyna (using MBPO model): as the CoDA model ex-
hibits significant model bias when used as a forward dy-
namics model, we replicate the state-of-the-art model-
based architecture used by MBPO (Janner et al., 2019)
and use it as a forward dynamics model for Dyna; we
experimented with 1-step and 5-step rollouts with ran-
dom actions from random states in the given dataset to
expand the dataset by 2x. This time we found that the 5-
step rollouts do better, which we attribute to the lower
model bias together with the ability to create a more
diverse dataset (1-step not shown). The MBPO model
is described below. We use the same reward model as
CoDA to relabel rewards for the MBPO model, which
only predicts next state.

5. MBPO + CoDA: as MBPO improved performance
over the baseline (real data only) at lower dataset sizes,
we considered using MBPO together with CoDA. We
use the base dataset to train the MBPO, CoDA, and
reward models, as described above. We then use the
MBPO model to expand the base dataset by 2x, as
described above. We then use the CoDA model to
expand the expanded dataset by 3x the original dataset
size. Thus the final dataset is 5x as large as the original
dataset (1 real : 1 MBPO : 3 CoDA).

All configurations alter only the training dataset, and the
same agent architecture/hyperparameters (reported above)
are used in each case.

MBPO model Since using the CoDA model for Dyna
harms rather than helps, we consider using a stronger, state-
of-the-art model-based approach. In particular, we adopt the
model used by Model-Based Policy Optimization (Janner
et al., 2019). This model consists of a size 7 ensemble of
neural networks, each with 4 layers of 200 neurons. We use
ReLU activations, Adam optimizer (Kingma & Ba, 2014)
with weight decay of 5e-5, and have each network output a
the mean and (log) diagonal covariance of a multi-variate
Gaussian. We train the networks with a maximum likelihood
loss. To sample from the model, we choose an ensemble
member uniformly at random and sample from its output
distribution, as done by MBPO.

Counterfactual Data Augmentation using Locally Factored Dynamics

C.2. Goal-conditioned RL

Here we detail the procedure used in the Goal-conditioned
RL experiments on the Fetchpush-v1 and Slide2 en-
vironments.

Implementation This experiment uses the same codebase
as our Batch RL, which provides state-of-the-art baseline
HER agents and will be released with the paper.

Hyperparameters For Fetchpush-v1 we use the de-
fault hyperparameters from the codebase, which outperform
the original HER agents of (Andrychowicz et al., 2017;
Plappert et al., 2018) and follow-up works. We do not tune
the CoDA agent (but see additional CoDA hyperparameters
below). They are as follows:

• Off-policy algorithm: DDPG (Lillicrap et al., 2015)

• Hindsight relabeling strategy: futureactual_2_2
(Pitis et al., 2019), using exclusively future
(Andrychowicz et al., 2017) relabeling for the first
25,000 steps

• Optimizer: Adam (Kingma & Ba, 2014) with default
hyperparameters

• Batch size: 2000

• Optimization frequency: 1 optimization step every 2
environment steps after the 5000th environment step

• Target network updates: update every 10 optimization
steps with a Polyak averaging coefficient of 0.05

• Discount factor: 0.98

• Action l2 regularization: 0.01

• Networks: 3x512 layer-normalized (Ba et al., 2016)
hidden layers with ReLU activations

• Target clipping: (-50, 0)

• Action noise: 0.1 Gaussian noise

• Epsilon exploration (Plappert et al., 2018): 0.2, with
an initial 100% exploration period of 10,000 steps

• Observation normalization: yes

• Buffer size: 1M

On Slide2 we tried to tune the baseline hyperparameters
somewhat, but note that this is a fairly long experiment
(10M timesteps) and so only a few settings were tested. In
particular, we considered the following modifications:

• Expanding the replay buffer to 2M (effective)

• Reducing the batch size to 1000 (effective)* (used for
results)

• Using the future_4 strategy (agent fails to learn in
10M steps)

• Reducing optimization step frequency to 1 step every
4 environment steps (about the same performance)

We tried similar adjustments to our CoDA agent, but found
the default hyperparameters (used for results) performed
well. We found that the CoDA agent outperforms the base
HER agent on all tested settings.

For CoDA, we used the additional hyperparameters:

• CoDA buffer size: 3M

• Make CoDA data every: 250 environment steps

• Number of source pairs from replay buffer used to
make CoDA data: 2000

• Number of CoDA samples per source pair: 2

• Maximum ratio of CoDA:Real data to train on: 3:1

Figure 7. Slide2.

Environment On
FetchPush-v1 the stan-
dard state features include the
relative position of the object and
gripper, which entangles the two.
While this could be dealt with by
dynamic relabeling (as used for
HER’s reward), we simply drop
the corresponding features from the state.

Slide2 has two pucks that slide on a table and bounce off
of a solid railing. Observations are 40-dimensional (includ-
ing the 6-dimensional goal), and actions are 4-dimensional.
Initial positions and goal positions are sampled randomly
on the table. During training, the agent gets a sparse reward
of 0 (otherwise -1) if both pucks are within 5cm of their
ordered target. At test time we count success as having
both picks within 7.5cm of the target on the last step of the
episode. Episodes last 75 steps and there is no done signal
(this is intended as a continuous task).

CoDA Heuristic For these experiments we use a hand-
coded heuristic designed with domain knowledge. In par-
ticular, we assert that the action is always entangled with
the gripper, and that gripper/action and objects (pucks or
blocks) are disentangled whenever they are more than 10cm
apart. This encodes independence due to physical separa-
tion, which we hypothesize is a very generally heuristic that
humans implicitly rely on all the time. The pucks have a
radius of 2.5cm and height of 4cm, and the blocks are 5cm
x 5cm x 5cm, so this heuristic is quite generous / subop-
timal. Despite being suboptimal, it demonstrates the ease
with which domain knowledge can be injected via the CoDA
mask: we need only a high precision (low false positive rate)
heuristic—the recall is not as important. It is likely that an
agent could learn a better mask that also takes into account
velocity.

Counterfactual Data Augmentation using Locally Factored Dynamics

D. Inferring Local Factorization
Here we present several approaches to inferring the local factorization of subspaces, a crucial subroutine of CoDA. We note
that in many cases where domain knowledge is available, simple heuristics may suffice, e.g. in our Goal-conditioned RL
experiments discussed in Section 4 where a simple distance-based indicator function in the state space was used. However,
as such heuristics may not be universally available, the question of whether data-driven approaches can successfully infer
local factorization is of general interest. We note that the performance of CoDA will improve alongside future improvements
in this inference task (motivating future work in this area), and that inferring the local factorization in general is an easier
task than learning the environment dynamics.

We begin by presenting two methods for inferring local factorization, derived from variants of a next-state prediction task,
which we here refer to as SANDy for Sparse Attention Neural Dynamics. To verify the merits of SANDy in the local
factorization inference task, we evaluate two SANDy variants in controlled settings where the ground truth factorization is
known: first in a synthetic Markov process (MDP without actions), and second in Spriteworld. This label information is
used only to evaluate performance, and not to train the SANDy parameters. The SANDy-Transformer model was used for
the Online RL experiments presented in Section 4.

D.1. Methods

We propose two Sparse Attention for Neural Dynamics (SANDy) models. In each case we seek to learn a function (or mask)
M(s, a)→ {0, 1}(|S|+|A|)×|S| whose output represents the adjacency matrix of the local causal graph, conditioned on the
state and action. We note that M(s, a)i,j = 0 alone is insufficient, in general, to determine the local subspace L ⊂ S ×A,
since there may be multiple disconnected subspaces Lk with Mk(s, a)i,j = 0 whose union

⋃
k Lk has M∪k(s, a)i,j = 1.

This can be resolved by our Proposition 1 if we also force the relevant structural equations to be the same. For now, we
assume the mask determines the local subspace, and leave exploration of this possibility to future work. Empirically, we will
see that our assumption is reasonable.

SANDy-Mixture The first model is a mixture-of-MLPs model with an attention mechanism that is computed from the
current state. Each component of the mixture is a neural dynamics model with sparse local dependencies. For a given
component, the key idea is to train a neural dynamics model to predict the next state h(st, at) ≈ st+1 and approximate the
masking function by thresholding the (transpose of the) network Jacobian of h, [J(s, a)]i,j = δ

δ[s,a]j
[h(s, a)]i. Intuitively,

we can think of J as providing the first-order element-wise dependencies between the predicted next state and the network
input. We then derive the local factorization by thresholding the absolute Jacobian

Mτ (s, a) = 1(|J(s, a)| > τ), (1)

where 1(·) represents the indicator function and τ is a threshold hyperparameter.

To estimate the network Jacobian, we note that for standard activation functions (sigmoid, tanh, relu), it can be bound
from above by the matrix product of its weight matrices. To see this, let hθ be an L-layer MLP parameterized by
θ = (W(1),b(1), · · · ,W(L),b(L)) with activation σ with bounded derivative σ′(x) ≤ 1, and note that for each layer
h(`) = σ(W(`)h(`−1) + b(`)) we have: ∣∣∣∣∣ dh

(`)
j

dh
(`−1)
i

∣∣∣∣∣ ≤ ∣∣∣W(`)
ji

∣∣∣.
Then, using the chain rule, triangle inequality, and the identity |ab| = |a||b|, we can compute:∣∣∣∣∣ dh

(`)
j

dh
(`−2)
i

∣∣∣∣∣ ≤
∣∣∣∣∣ d

dh
(`−2)
i

W
(`)
j· h

(`−1)

∣∣∣∣∣ =

∣∣∣∣∣W(`)
j· ·

dh(`−1)

dh
(`−2)
i

∣∣∣∣∣
≤
∑
k

∣∣∣∣∣W(`)
jk

dh
(`−1)
k

dh
(`−2)
i

∣∣∣∣∣ ≤ ∣∣∣W(`)
j·

∣∣∣ · ∣∣∣W(`−1)
·i

∣∣∣.
Expanding this out to multiple layers, we see that

∣∣Jθ(s, a)
∣∣ ≤ ∏`∈[L] |W(`)|, as desired. We use this upper bound to

approximate the network Jacobian of an MLP by setting Ĵ =
∏
`∈[L] |W(`)|. A similar idea is used by (Germain et al.,

2015; Lachapelle et al., 2019), among others, to control element-wise input-output dependencies.

Counterfactual Data Augmentation using Locally Factored Dynamics

We use this static approximation Ĵ to facilitate learning a sparse dynamic mask by specifying a mixture model h(s, a) =∑
i α

(i)
φ (s, a)h

(i)
θ (s, a) over the environment dynamics (with

∑
i α

(i)
φ (s, a) = 1 ∀ (s, a)), where each component h(i)θ is

an MLP as specified above with a sparsity prior on its Jacobian bound Ĵ(i) to encourage sparse (i.e. well-factorized)
local solutions. The dynamic mask is computed by first approximating the Jacobian, Ĵ(s, a) =

∑
i α

(i)
φ (s, a)Ĵ(i), then

thresholding by τ as in Equation 1.

Note that we assume the mixture components α are a function of the current state and action alone; in other words the
factorization (captured by the network Jacobian of each component) can be locally inferred. The next-state prediction is
given by ŝt+1 = (h

(1)
θ (st,at), · · · , h(N)

θ (st,at))
Tαφ(st,at). To train the model, we optimize the objective:

minimize
θ,φ

1

|D|

(∑
(st,atst+1)∈D

||st+1 − h(st,at)||22
)
+ λ1S(θ) + λ2R(φ) + λ3||(θ, φ)||2 (2)

where S(θ) = 1
K

∑
i |Ĵ

(i)
θ |1 puts an `1 prior on each mixture component to induce sparsity, and R(φ) encourages high

entropy in the attention probabilities

R(φ) =
1

|D|
∑
s∈D

√√√√ 1

N

∑
j∈[N]

[Aφ(s,a)]j .

We note that more sophisticated methods of computing Jacobians of neural networks–including architectural changes and
optimization strategies (Arjovsky et al., 2017)—have been proposed, and could in principle be used here as well.

SANDy-Transformer As an alternative model, we use a transformer-like architecture that applies self-attention between
a set of (potentially multi-dimensional) inputs (Vaswani et al., 2017; Lee et al., 2018). Our architecture is composed of a
stacked self-attention blocks. Each block accepts a set of inputs X = {xi ∈ Rn} and composes three functions of each
input: query Q : Rn → Rd, key K : Rn → Rd, and value V : Rn → Rm. The block returns a set of outputs {yi ∈ Rm} of
size |X|, each of which is computed as: yi = ATi V (X), where Ai = softmax

(∑
j(Q(xi)jK(xj)i)

)
(note that V (X) is a

matrix of size |X| ×m). We approximate the block mask (approximate Jacobian) as A = [A1, A2, . . . , A|X|] ∈ R|X|×|X|,
and the full network mask as the product of the block masks (as in the SANDy-Mixture). We used two-layer MLPs for each
function K,Q, V in Spriteworld and three-layer MLPs in Pong.

To apply this architecture to our problem, we first embed each state and action component (single feature, or group of
features) into Rn to produce a set of inputs X and pass this through each stacked self-attention block to obtain a set of
outputs Y . We then discard any output components that correspond to the action features to obtain the next state prediction
and mask. The network h is trained to minimize mean squared error:

minimize
θ

1

|D|
∑

(st,atst+1)∈D

||st+1 − h(st,at)||22. (3)

Unlike the SANDy-Mixture, no sparsity regularizers are applied, as we found the sparsity induced by the softmax attention
mechanism to be sufficient.

D.2. Evaluation environments

Synthetic Markov Processes We investigate the capacity of the SANDy-Mixture to learn simple factorized transition
dynamics under a globally factored Markov Process (STATIONARYMP). Unlike the general MDP setting, no agent/policy is
considered. However the ability to train an unconstrained dynamics model to approximate factorized environment dynamics
is an important subtask within our overall approach. Assuming a spherical Gaussian prior over the initial states s0 ∈ R9, the
STATIONARYMP is entirely specified by transition distribution p(st+1|st). We assume that the state transitions factorize
(globally) into three parts. Denoting by stn···m the n-th through m-th dimensions of the time t state st, we have:

p(st+1
1···9|st1···9) = p(st+1

1···4|st1···4)p(st+1
5···7|st5···7)p(st+1

8,9 |st8,9).

In other words, we have a block-diagonal transition matrix comprising three blocks with sizes 4, 3, and 2, respectively.
In our case, all transition factors are deterministic non-linear mappings, e.g. p(st+1

1···4|st1···4) = δ(g1···4(st1···4)), with

Counterfactual Data Augmentation using Locally Factored Dynamics

g1···4 : R4 → R4 is a randomly-initialized single-hidden-layer neural network with 32 hidden units and GELU nonlinearity
(Hendrycks & Gimpel, 2016). In this case, we can alternatively express the deterministic dynamics via the transition function

st+1 = (st+1
1···4, s

t+1
5···7, s

t+1
8,9)

= (g1···4(st1···4), g5···7(st5···7), g8,9(st8,9)). (STATIONARYMP)

We now turn to a more sophisticated MP with locally factored dynamics (ε-NONSTATIONARYMP), and investigate whether
the SANDy-Mixture can learn to recognize local disentanglement.

We refer to the component functions g1···4 : R4 → R4, g5···7 : R3 → R3, and g8,9 : R2 → R2 used in the STATION-
ARYMP as local transitions. We now introduce global interactions via the global transition functions, G1···4 : R4 → R9,
G5···7 : R4 → R9, and G8,9 : R4 → R9, which respectively map the local state factors onto the global state space1. This
allows us to extend the STATIONARYMP by adding global state transitions to the local state transitions whenever the norm
of the local state factors exceeds the value of a hyperparameter ε (lower ε indicates more global interaction). Denoting by
1(·) the indicator function, we have

st+1 =
[
(st+1

1 , st+1
2 , st+1

3 , st+1
4), (st+1

5 , st+1
6 , st+1

7), (st+1
8 , st+1

9)
]

=
[
g1···4(st1···4), g5···7(st5···7), g8,9(st8,9)

]
+G1···4(st1···4)1(||st1···4||2 > ε)

+G5···7(st5···7)1(||st5···7||2 > ε)

+G8,9(st8,9)1(||st8,9||2 > ε). (ε-NONSTATIONARYMP)

Spriteworld Since we extended Spriteworld with a ground truth mask renderer, we are able to directly evaluate our
SANDy models in Spriteworld as well. See the main text and Appendix C for a description of the Spriteworld
environment.

D.3. Results

In this Subsection we measure ability of the proposed SANDy algorithm (in its two variants) to correctly infer local
factorization. At each transition we can query the environment for the ground-truth connectivity pattern of the local causal
graph: given |S|+ |A| dimensions of current state and action and |S| dimensions of next state, this corresponds an adjacency
matrix Y ∈ {0, 1}|S|+|A|×|S|.We note that accessing these evaluation labels—which are not used to train SANDy—requires
a controlled synthetic environment like the ones we consider, and we leave design of an evaluation protocol suitable for
real-world environments to future work.

We learn the SANDy network parameters using a training dataset of 40, 000 transitions, with an additional validation dataset
of 10, 000 transitions used for early stopping and hyperparameter selection. We used the Adam optimizer with learning rate
of 0.001 and default hyperparameters. In the ε-NONSTATIONARYMP, we set ε = 1.5, while in the Spriteworld setting we
collect training trajectories by deploying a random-action agent in the environment, and randomly resetting the environment
with 5% probability at every step to increase diversity of experiences. We then evaluate the SANDy models by computing
local factorizations Mτ (s, a) : |S| × |A| → {0, 1}(|S|+|A|)×|S| as a function of the threshold τ for each transition in a
held-out test dataset of 10, 000 trajectories. We compute true and false positive rates for various values of τ to produce ROC
plots.

Figure 8 shows that while the SANDy-Mixture is sufficient to solve the simpler synthetic MP settings (with avg AUC of
0.96 and 0.91 for the stationary and non-stationary variants), it scales poorly to the Spriteworld environment. While the
modest inductive bias of sparse local connections and high-entropy mixture components in SANDy-Mixture makes it widely
applicable, we hypothesize that its sensitivity to hyperparameters makes it difficult to tune in complex settings. Fortunately,
SANDy-Transformer, performs favorably in Spriteworld by incorporating a stronger inductive bias about the state subspace
structure. Thus we use SANDy-Transformer to perform local factorization inference in the remaining experiments.

Figure 9 provides some qualitative intuition as to how the two variants of SANDy differ in their attention strategy in the
Spriteworld environment.

1Like the local transition functions, global transition functions are implemented as randomly-initialized single-hidden-layer neural
networks.

Counterfactual Data Augmentation using Locally Factored Dynamics

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

SANDy-M (Avg. AUC 0.96)

(a) STATIONARYMP

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SANDy-M (Avg. AUC 0.91)

(b) ε-NONSTATIONARYMP

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SANDy-T (Avg. AUC 0.97)
SANDy-M (Avg. AUC 0.66)

(c) Spriteworld

Figure 8. ROC plots for correct sparsity patter prediction on the three environments. On held-out test transitions we derive the ground
truth local connectivity per step—label information that is not used to train the attention model—and measure (over 5 runs; 1 std. dev.
shaded) true and false positive rates while sweeping the mask threshold τ over its allowable range. An accurate model generates an Area
Under the Curve (AUC) close to 1. We observe that while SANDy-Mixture is sufficient for (nearly) solving the simpler synthetic MP
environments, it underperforms in Spriteworld. SANDy-Transfomer, which has a stronger inductive bias, is sufficient to (nearly) solve
Spriteworld.

E. Fitting dynamics models to Spriteworld
Since CoDA is a data augmentation strategy, it is reasonable to consider an alternative approach to augmenting the experience
buffer: sampling from a dynamics model as in model-based RL. Here we present some qualitative results from our efforts in
fitting dynamics models to the Spriteworld environment. We found that while dynamics models achieve a decent error in
the next-state prediction task, they fail to produce a diverse set of trajectories when used as autoregressive samplers. In
particular, the autoregressive sampling did not model collisions well and often produced trajectories where sprites converged
to fixed points in space after a short number of steps. Figure 10 shows trajectories sampled autoregressively from Linear,
MLP, and LSTM-based dynamics models, alongside the ground truth trajectory. Note that all dynamics models were trained
to minimize error in next-state prediction given the current state and action. In other words the LSTM auto-regressively
predicts successive dimensions of the next state rather than modeling multiple time steps of the trajectory. Nevertheless
the environment is truly Markov because instantaneous velocities are observed, so this information should be sufficient in
theory to capture the environment dynamics.

F. Sample efficient dynamics modeling with CoDA
If we had access to the ground truth local factorization, even for a few samples (e.g., we could have humans label them), how
much more efficient would it be to train a dynamics model? In Figure 11, we sample 2000 transitions from a random policy
in Spriteworld and use the data to train a forward dynamics model using MSE loss. The validation loss throughout training
is plotted. Our baseline uses only the initial dataset, and quickly overfits the training set, showing increasing error after
the initial few epochs. The same applies to a “random” CoDA strategy, that does CoDA using an identity attention mask
(M(s, a) = I ∀ (s, a)) to randomly relabel the components. The random strategy does a bit better than the no CoDA strategy,
since the randomness acts as a regularizer. Finally, we train a model using an additional 35,000 unique counterfactual CoDA
transitions, and find that it significantly improves validation loss and prevents the model from overfitting. Note that we could
have generated many more CoDA samples: from 2000 base transitions, if 80% of them do not involve collisions and there
are 4 connected components in each, we could generate as many as 16004 (6.5 trillion!) counterfactual samples.

G. Compute Infrastructure
Experiments were run on a mix of local machines and a compute cluster, with a mix of GTX 1080 Ti, Titan XP, and
Tesla P100 GPUs. This was solely to run jobs in parallel, and all experiments can be run locally (GPU optional for
Spriteworld and Pong, but recommended for Fetch experiments).

Counterfactual Data Augmentation using Locally Factored Dynamics

(a) SANDy-Mixture (b) SANDy-Transformer

Figure 9. Qualitative comparison of two attention mechanisms on the same Spriteworld trajectory. SANDy-Mixture (left) has a
weaker inductive bias as it relies on sparsity regularization alone. Accordingly, it can learn a more compact subspace (e.g. grid patterns
within a shape indicate that x and y coordinates move independently), but is less reliable in attending to collisions between shapes, and
completely fails to attend to the action’s affect on shapes. SANDy-Transformer has a stronger inductive bias and can more reliably infer
the local interaction pattern between the five subspaces (four shapes and one action).

Counterfactual Data Augmentation using Locally Factored Dynamics

(a) Ground Truth

(b) Linear Dynamics

(c) MLP Dynamics

(d) LSTM Dynamics

Figure 10. Auto-regressive model-based rollouts for a variety of dynamics models fit to Spriteworld. While the dynamics models were
able to achieve relatively low error in the next-state prediction task, they fail to capture collisions and long-term dependencies in the
sampled trajectories, and thus were omitted as baselines in the RL experiments. All trajectories share the same initial state.

Figure 11. Learning curves for training a forward dynamics model using data from a random policy. Dotted lines indicate training
performance, whereas solid lines indicate validation performance. We see that using the ground truth mask prevents overfitting and allows
us to achieve much better validation performance.

