
Model-based Adversarial Meta-Reinforcement Learning

Zichuan Lin 1 Garrett Thomas 2 Guangwen Yang 1 Tengyu Ma 2

Abstract

Meta-reinforcement learning (meta-RL) aims to
learn from multiple training tasks the ability to
adapt efficiently to unseen test tasks. Despite the
success, existing meta-RL algorithms are known
to be sensitive to the task distribution shift. When
the test task distribution is different from the train-
ing task distribution, the performance may de-
grade significantly. To address this issue, this
paper proposes Model-based Adversarial Meta-
Reinforcement Learning (AdMRL), where we aim
to minimize the worst-case sub-optimality gap –
the difference between the optimal return and the
return that the algorithm achieves after adapta-
tion – across all tasks in a family of tasks, with
a model-based approach. We propose a minimax
objective and optimize it by alternating between
learning the dynamics model on a fixed task and
finding the adversarial task for the current model –
the task for which the policy induced by the model
is maximally suboptimal. Assuming the family
of tasks is parameterized, we derive a formula
for the gradient of the suboptimality with respect
to the task parameters via the implicit function
theorem, and show how the gradient estimator
can be efficiently implemented by the conjugate
gradient method and a novel use of the REIN-
FORCE estimator. We evaluate our approach
on several continuous control benchmarks and
demonstrate its efficacy in the worst-case perfor-
mance over all tasks, the generalization power to
out-of-distribution tasks, and in training and test
time sample efficiency, over existing state-of-the-
art meta-RL algorithms.

1. Introduction
Deep reinforcement learning (Deep RL) methods can
solve difficult tasks such as Go (Silver et al., 2016),

1Tsinghua University 2Stanford University. Correspondence to:
Zichuan Lin <linzc16@mails.tsinghua.edu.cn>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Atari games (Mnih et al., 2013), robotic control (Levine
et al., 2016) successfully, but often require sampling a
large amount interactions with the environment. Meta-
reinforcement learning and multi-task reinforcement learn-
ing aim to improve the sample efficiency by leveraging
the shared structure within a family of tasks. For exam-
ple, Model Agnostic Meta Learning (MAML) (Finn et al.,
2017) learns in the training time a shared policy initializa-
tion across tasks, from which in the test time it can adapt
to the new tasks quickly with a small amount of samples.
The more recent work PEARL (Rakelly et al., 2019) learns
latent representations of the tasks in the training time, and
infers the representations of test tasks and adapts to them.

The existing meta-RL formulation and methods are largely
distributional. The training tasks and the testing tasks are
assumed to be drawn from the same distribution of tasks.
Consequently, the existing methods are prone to the distri-
bution shift issue, as shown in (Mehta et al., 2020) — when
the tasks in the test time are not drawn from the same distri-
bution as in the training, the performance degrades signifi-
cantly. Figure 1 also confirms this issue for PEARL (Rakelly
et al., 2019), a recent state-of-the-art meta-RL method, on
the Ant2D-velocity tasks. PEARL can adapt to tasks
with smaller goal velocities much better than tasks with
larger goal velocities, in terms of the relative difference,
or the sub-optimality gap, from the optimal policy of the
corresponding task.1 To address this issue, Mehta et al.
(2020) propose an algorithm that iteratively re-define the
task distribution to focus more on the hard task.

In this paper, we instead take a non-distributional per-
spective by formulating the adversarial meta-RL problem.
Given a parametrized family of tasks, we aim to minimize
the worst sub-optimality gap — the difference between the
optimal return and the return the algorithm achieves after
adaptation — across all tasks in the family in the test time.
This can be naturally formulated mathematically as a mini-
max problem (or a two-player game) where the maximum
is over all the tasks and the minimum is over the parameters
of the algorithm (e.g., the shared policy initialization or the
shared dynamics).

1The same conclusion is still true if we measure the raw per-
formance on the tasks. But that could be misleading because the
tasks have varying optimal returns.

Model-based Adversarial Meta-Reinforcement Learning

Figure 1. The performance of PEARL (Rakelly et al., 2019) on Ant2D-velocity tasks. Each task is
represented by the target velocity (x, y) ∈ R2 with which the ant should run. The training tasks are
uniformly drawn in [−3, 3]2. The color of each cell shows the sub-optimality gap of the corresponding task,
namely, the optimal return of that task minus the return of PEARL. Lighter means smaller sub-optimality
gap and is better. High-velocity tasks tend to perform worse, which implies that if the test task distribution
shift towards high-velocity tasks, the performance will degrade.

Our approach is model-based. We learn a shared dynamics
model across the tasks in the training time, and during the
test time, given a new reward function, we train a policy
on the learned dynamics. The model-based methods can
outperform significantly the model-free methods in sample-
efficiency even in the standard single task setting (Luo et al.,
2018; Dong et al., 2019; Janner et al., 2019; Wang & Ba,
2019; Chua et al., 2018; Buckman et al., 2018; Nagabandi
et al., 2018c; Kurutach et al., 2018; Feinberg et al., 2018;
Rajeswaran et al., 2016; 2020; Wang et al., 2019), and are
particularly suitable for meta-RL settings where the optimal
policies for tasks are very different, but the underlying dy-
namics is shared (Landolfi et al., 2019). We apply the natural
adversarial training (Madry et al., 2017) on the level of tasks
— we alternate between the minimizing the sub-optimality
gap over the parameterized dynamics and maximizing it
over the parameterized tasks.

The main technical challenge is to optimize over the task pa-
rameters in a sample-efficient way. The sub-optimality gap
objective depends on the task parameters in a non-trivial way
because the algorithm uses the task parameters iteratively in
its adaptation phase during the test time. The naive attempt
to back-propagate through the sequential updates of the
adaptation algorithm is time costly, especially because the
adaptation time in the model-based approach is computation-
ally expensive (despite being sample-efficient). Inspired by
a recent work on learning equilibrium models in supervised
learning (Bai et al., 2019), we derive an efficient formula
of the gradient w.r.t. the task parameters via the implicit
function theorem. The gradient involves an inverse Hessian
vector product, which can be efficiently computed by con-
jugate gradients and the REINFORCE estimator (Williams,
1992). In summary, our contributions are: (1) We propose
a minimax formulation of model-based adversarial meta-
reinforcement learning (AdMRL, pronounced like “admi-
ral”) with an adversarial training algorithm to address the
distribution shift problem. (2) We derive an estimator of the
gradient with respect to the task parameters, and show how it
can be implemented efficiently in both samples and time. (3)
Our approach significantly outperforms the state-of-the-art
meta-RL algorithms in the worst-case performance over all
tasks, the generalization power to out-of-distribution tasks,
and in training and test time sample efficiency on a set of
continuous control benchmarks.

2. Preliminaries
Reinforcement Learning. Consider a Markov Decision
Process (MDP) (S,A, T, r, p0, γ), where S and A are state

and action space, T is transition dynamics, r is reward
function, γ ∈ [0, 1) is discount factor and p0 is an initial
state distribution. Let π(·|s) be policy. Let T ? denote the
unknown true transition dynamics. We define the value
function V π,T : S → R at state s for a policy π on dynamics
T : V π,T (s) = E

at,st∼π,T
[
∑∞
t=0 γ

tr(st, at)|s0 = s]. The

goal of RL is to seek a policy that maximizes the expected
return η(π, T) := E

s0∼p0

[
V π,T (s0)

]
.

Meta-Reinforcement Learning. In this paper, we con-
sider a family of tasks parameterized by Ψ ⊆ Rk and a
family of polices parameterized by Θ ⊆ Rp. The fam-
ily of tasks is a family of MDP {(S,A, T, rψ, p0, γ)}ψ∈Ψ

which all share the same dynamics but differ in the reward
function. We denote the value function of a policy π on
a task with reward rψ and dynamics T by V π,Tψ , and de-
note the expected return for each task and dynamics by
η(π, T, ψ) = E[V π,Tψ (s0)]. For simplicity, we will use the
shorthand η(θ, T, ψ) := η(πθ, T, ψ). Let Φ ⊆ Rd denote
the set of all structures. A meta-RL training algorithm seeks
to find a shared structure φ ∈ Φ, which is subsequently used
by an adaptation algorithm A : Φ×Ψ→ Θ to learn quickly
in new tasks. In this paper, the shared structure φ is the
learned dynamics (more below).

Model-based Reinforcement Learning. In model-based
reinforcement learning (MBRL), we parameterize the tran-
sition dynamics of the model T̂φ and learn the parameters φ
so that it approximates the true transition dynamics of T ?.
In this paper, we use Stochastic Lower Bound Optimization
(SLBO) (Luo et al., 2018), which is an MBRL algorithm
with theoretical guarantees of monotonic improvement.

3. Model-based Adversarial
Meta-Reinforcement Learning

Formulation. We consider a family of tasks whose reward
functions rψ(s, a) are parameterized by some parameters
ψ, and assume that rψ(s, a) is differentiable w.r.t. ψ for
every s, a. We assume the reward function parameterization
rψ(·, ·) is known throughout the paper.2 Recall that the total
return of policy πθ on dynamics T and tasks ψ is denoted
by η(θ, T, ψ) = E

τ∼πθ,T
[Rψ(τ)] . Here Rψ(τ) is the return

of the trajectory under reward function rψ. As shorthand,
we define η?(θ, ψ) = η(θ, T ?, ψ) as the return in the real

2It’s challenging to formulate the worst-case performance with-
out knowing a reward family, e.g., when we only have access to
randomly sampled tasks from a task distribution.

Model-based Adversarial Meta-Reinforcement Learning

environment on tasks ψ and η̂φ(θ, ψ) = η(θ, T̂φ, ψ) as the
return on the virtual dynamics T̂φ on task ψ.

Given a learned dynamics T̂φ and test task ψ, we can per-
form a zero-shot model-based adaptation by computing
the best policy for task ψ under the dynamics T̂φ, namely,
arg maxθ η̂φ(θ, ψ). Let L(φ, ψ), formally defined in equa-
tion below, be the suboptimality gap of the T̂φ-optimal pol-
icy on task ψ, i.e. the difference between the performance of
the best policy for task ψ and the performance of the policy
which is best for ψ according to the model T̂φ. Our overall
aim is to find the best shared dynamics T̂φ, such that the
worst-case sub-optimality gap L(φ, ψ) is minimized. This
can be formally written as a minimax problem:

min
φ

max
ψ

[
max
θ
η?(θ, ψ)− η?

(
argmax

θ
η̂φ(θ, ψ), ψ

)]
︸ ︷︷ ︸

,L(φ,ψ)

. (1)

In the inner step (max over ψ), we search for the task ψ
which is hardest for our current model T̂φ, in the sense that
the policy which is optimal under dynamics T̂φ is most sub-
optimal in the real MDP. In the outer step (min over T̂φ), we
optimize for a model with low worst-case suboptimality. We
remark that, in general, other definitions of sub-optimality
gap, e.g., the ratio between the optimal return and achieved
return may also be used to formulate the problem.

Algorithmically, by training on the hardest task found in the
inner step, we hope to obtain data that is most informative
for correcting the model’s inaccuracies.

Computing Derivatives with respect to Task Parame-
ters. To optimize Eq. (1), we will alternate between the
min and max using gradient descent and ascent respectively.
Fixing the task ψ, minimizing L(φ, ψ) reduces to standard
MBRL.

On the other hand, for a fixed model T̂φ, the inner max-
imization over the task parameter ψ is non-trivial, and is
the focus of this subsection. To perform gradient-based
optimization, we need to estimate ∂L

∂ψ . Let us define
θ? = arg maxθ η

?(θ, ψ) (the optimal policy under the true
dynamics and task ψ) and θ̂ = arg maxθ η̂φ(θ, ψ) (the op-
timal policy under the virtual dynamics and task ψ). We
assume there is a unique θ̂ for each ψ. Then,

∂L
∂ψ

=
∂η?

∂ψ

∣∣∣∣
θ?
−

(
∂θ̂>

∂ψ

∂η?

∂θ

∣∣∣∣
θ̂

+
∂η?

∂ψ

∣∣∣∣
θ̂

)
. (2)

Note that the first term comes from the usual (sub)gradient
rule for pointwise maxima, and the second term comes
from the chain rule. Differentiation w.r.t. ψ commutes with
expectation over τ , so

∂η?

∂ψ
= E
τ∼πθ,T?

[
∂Rψ(τ)

∂ψ

]
= E
τ∼πθ,T?

[
∞∑
t=0

γt
∂rψ(st, at)

∂ψ

]
.

(3)
Thus the first and last terms of the gradient of Eq. (2)

can be estimated by simply rolling out πθ? and πθ̂ and

differentiating the sampled rewards. Let Aπθ̂ (st, at) be the
advantage function. Then, the term ∂η?

∂θ

∣∣∣
θ̂

in Eq. (2) can be
computed by the standard policy gradient

∂η?

∂θ

∣∣∣∣
θ̂

= E
τ∼π

θ̂
,T?

[
∞∑
t=0

γt
∂ log πθ(at|st)

∂θ

∣∣∣∣
θ̂

Aπθ̂ (st, at)

]
.

(4)
The complicated part left in Eq. (2) is ∂θ̂>

∂ψ . We compute it
using the implicit function theorem (Wikipedia contributors,
2020) (see Section A.1 for details):

∂θ̂

∂ψ>
= −

(
∂2η̂φ
∂θ∂θ>

∣∣∣∣
θ̂

)−1
∂2η̂φ
∂θ∂ψ>

∣∣∣∣
θ̂

. (5)

The mixed-derivative term in equation above can be com-
puted by differentiating the policy gradient:

∂2η̂φ
∂θ∂ψ>

∣∣∣∣
θ̂

= E
τ∼π

θ̂
,T̂φ

[
∞∑
t=0

γt
∂ log πθ(at|st)

∂θ

∣∣∣∣
θ̂

∂Aπθ̂ (st, at)

∂ψ>

]
.

(6)
An estimator for the Hessian term in Eq. (5) can be de-

rived by the REINFORCE estimator (Sutton et al., 2000),
or the log derivative trick (see Section A.2 for a detailed
derivation),
∂2η̂φ
∂θ∂θ>

= E
τ∼πθ,T̂φ

[(
∂ log πθ(τ)

∂θ

∂ log πθ(τ)

∂θ>
+
∂2 log πθ(τ)

∂θ∂θ>

)
Rψ(τ)

]
.

(7)
By computing the gradient estimator using implicit function
theorem, we do not need to back-propagate through the
sequential updates of our adaptation algorithm, from which
we can estimate the gradient w.r.t. task parameters in a
sample-efficient and computationally tractable way. We
provide a practical implementation of our algorithm AdMRL
in Appendix B.

4. Experiments
In our experiments, we aim to study the following questions:
(1) How does AdMRL perform on standard meta-RL bench-
marks compared to prior state-of-the-art approaches? (2)
Does AdMRL achieve better worst-case performance than
distributional meta-RL methods? (3) How does AdMRL
perform in environments where task parameters are high-
dimensional? (4) Does AdMRL generalize better than dis-
tributional meta-RL on out-of-distribution tasks?

4.1. Adaptation Performance Compared to Baselines
We evaluate our approach on a variety of continuous control
tasks based on OpenAI gym (Brockman et al., 2016), which
uses the MuJoCo physics simulator (Todorov et al., 2012).
We list all experiments setup in Appendix C.

We compare our algorithm against MAML and PEARL.
Figure 2 shows the adaptation results on the testing tasks
set. We produce the curves by: (1) running our algorithm
and baseline algorithms by training on adversarially chosen
tasks and uniformly sampling random tasks respectively; (2)

Model-based Adversarial Meta-Reinforcement Learning

Figure 2. Average of returns An(ψ) over all tasks of adapted poli-
cies (with 3 random seeds) from AdMRL, MAML and PEARL.
Our approach substantially outperforms baselines in training and
test time sample efficiency, and even with zero-shot adaptation.

(a) (b)
Figure 3. (a) Sub-optimality gap Gn(ψ) of adapted policies n =
6K for each test task ψ from AdMRL, MB-Unif, and MB-Gauss.
Lighter means smaller, which is better. For tasks on the boundary,
AdMRL achieves much lower Gn(ψ) than MB-Gauss and MB-
Unif, which indicates AdMRL generalizes better in the worst case.
(b) The worst-case sub-optimality gap Gmax

n in the number of
adaptation samples n. AdMRL successfully minimizes the worst-
case suboptimality gap.

for each test task, we first do zero-shot adaptation for our al-
gorithm and then run our algorithm and baseline algorithms
by collecting samples; (3) estimating the averaged returns of
the policies by sampling new roll-outs. The curves show the
return averaged across all testing tasks with three random
seeds in testing time. Our approach AdMRL outperforms
MAML and PEARL across all test tasks, even though our
method visits much fewer tasks (7/8) and samples (2/3)
than baselines during meta-training. AdMRL outperforms
MAML and PEARL with even zero-shot adaptation, namely,
collecting no samples.3

4.2. Comparing with Model-based Baselines in
Worst-case Sub-optimality Gap

To investigate the worst-case performance of our approach,
we compare our adversarial selection method with distribu-
tional variants — using model-based training but sampling
tasks with a uniform or gaussian distribution with variance
1, denoted by MB-Unif and MB-Gauss, respectively. We
plot heatmap figures by computing the sub-optimality gap
for each test task in figure 3(a). We find that while both
MB-Gauss and MB-Unif tend to over-fit on the tasks in the
center, AdMRL can generalize much better to the tasks on
the boundary. In figure 3(b), We also find that AdMRL can
achieve lower sub-optimality gap in the worst cases.

3Note that the zero-shot model-based adaptation is taking ad-
vantage of additional information (the reward function) which
MAML and PEARL have no mechanism for using.

(a) (b)
Figure 4. (a) Visualization of visited training tasks by MB-Unif,
MB-Gauss and AdMRL; AdMRL can quickly visit tasks with
large suboptimality gap on the boundary and train the model to
minimize the worst-case suboptimality gap. (b) The worst-case
suboptimality gap Gmax

n in the number of adaptation samples n
for high-dimensional tasks. AdMRL significantly outperforms
baselines in such tasks.

Performance on high-dimensional tasks. We show in fig-
ure 4(b) that AdMRL performs significantly better than
MB-Unif and MB-Gauss when the task parameters are high-
dimensional. In the high-dimensional tasks, sampling from
a given distribution of tasks during meta-training becomes
less efficient — it is hard to cover all tasks with worst subop-
timality gap by randomly sampling from a given distribution.
On the contrary, our non-distributional adversarial selection
way can search for those hardest tasks efficiently and train a
model that minimizes the worst suboptimality gap.

Visualization. To understand how our algorithm works,
we visualize the task parameter ψ that visited during meta-
training in Ant3D environment. We compare our method
with MB-Unif and MB-Gauss in figure 4(a). We find that
our method can quickly visit the hard tasks on the boundary,
in the sense that we can find the most informative tasks to
train our model. On the contrary, sampling randomly from
uniform or gaussian distribution has much less probability
to visit the tasks on the boundary.

4.3. Out-of-distribution Performance

We evaluate our algorithm on out-of-distribution tasks in
the Ant2D environment. We train agents with tasks drawn
in Ψ = [−3, 3]2 while testing on OOD tasks from Ψ =
[−5, 5]2. Appendix E shows that AdMRL has much lower
suboptimality gap than MB-Unif and MB-Gauss on OOD
tasks, which shows the generalization power of AdMRL.

5. Conclusion
In this paper, we propose Model-based Adversarial Meta-
Reinforcement Learning (AdMRL), to address the distribu-
tion shift issue of meta-RL. We formulate the adversarial
meta-RL problem and propose a minimax formulation to
minimize the worst sub-optimality gap. To optimize effi-
ciently, we derive an estimator of the gradient with respect to
the task parameters, and implement the estimator efficiently
using the conjugate gradient method. We provide extensive
results on standard benchmark environments to show the
efficacy of our approach over prior meta-RL algorithms. In
the future, several interesting directions lie ahead. (1) Apply
AdMRL to more difficult settings such as visual domain. (2)
Use other MBRL algorithms. (3) Apply AdMRL to cases
where the parameterization of reward function is unknown.

Model-based Adversarial Meta-Reinforcement Learning

References
Atlas, L. E., Cohn, D. A., and Ladner, R. E. Training con-

nectionist networks with queries and selective sampling.
In Advances in neural information processing systems,
pp. 566–573, 1990.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In Advances in Neural Information Processing
Systems, pp. 688–699, 2019.

Bengio, S., Bengio, Y., Cloutier, J., and Gecsei, J. On the
optimization of a synaptic learning rule. In Preprints Conf.
Optimality in Artificial and Biological Neural Networks,
volume 2. Univ. of Texas, 1992.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee,
H. Sample-efficient reinforcement learning with stochas-
tic ensemble value expansion. In Advances in Neural
Information Processing Systems, pp. 8224–8234, 2018.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T.,
and Efros, A. A. Large-scale study of curiosity-driven
learning. arXiv preprint arXiv:1808.04355, 2018a.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018b.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems, pp. 4754–4765, 2018.

Dong, K., Luo, Y., and Ma, T. Bootstrapping the ex-
pressivity with model-based planning. arXiv preprint
arXiv:1910.05927, 2019.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Fakoor, R., Chaudhari, P., Soatto, S., and Smola, A. J. Meta-
q-learning. arXiv preprint arXiv:1910.00125, 2019.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez,
J. E., and Levine, S. Model-based value estimation for ef-
ficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1126–1135. JMLR. org, 2017.

Gupta, A., Eysenbach, B., Finn, C., and Levine, S. Unsu-
pervised meta-learning for reinforcement learning. arXiv
preprint arXiv:1806.04640, 2018.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In International Confer-
ence on Artificial Neural Networks, pp. 87–94. Springer,
2001.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning as
task inference. arXiv preprint arXiv:1905.06424, 2019.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in Neural Information Processing Systems, pp.
12498–12509, 2019.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu,
T. Reward-free exploration for reinforcement learning.
arXiv preprint arXiv:2002.02794, 2020.

Kirsch, L., van Steenkiste, S., and Schmidhuber, J. Improv-
ing generalization in meta reinforcement learning using
learned objectives. arXiv preprint arXiv:1910.04098,
2019.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P.
Model-ensemble trust-region policy optimization. arXiv
preprint arXiv:1802.10592, 2018.

Lan, L., Li, Z., Guan, X., and Wang, P. Meta reinforcement
learning with task embedding and shared policy. arXiv
preprint arXiv:1905.06527, 2019.

Landolfi, N. C., Thomas, G., and Ma, T. A model-based
approach for sample-efficient multi-task reinforcement
learning. arXiv preprint arXiv:1907.04964, 2019.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Lewis, D. D. and Gale, W. A. A sequential algorithm for
training text classifiers. In SIGIR’94, pp. 3–12. Springer,
1994.

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T.
Algorithmic framework for model-based deep reinforce-
ment learning with theoretical guarantees. arXiv preprint
arXiv:1807.03858, 2018.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Model-based Adversarial Meta-Reinforcement Learning

Mehta, B., Deleu, T., Raparthy, S. C., Pal, C. J., and Paull, L.
Curriculum in gradient-based meta-reinforcement learn-
ing. arXiv preprint arXiv:2002.07956, 2020.

Mendonca, R., Gupta, A., Kralev, R., Abbeel, P., Levine, S.,
and Finn, C. Guided meta-policy search. In Advances in
Neural Information Processing Systems, pp. 9653–9664,
2019.

Mendonca, R., Geng, X., Finn, C., and Levine, S. Meta-
reinforcement learning robust to distributional shift via
model identification and experience relabeling. arXiv
preprint arXiv:2006.07178, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel,
P., Levine, S., and Finn, C. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018a.

Nagabandi, A., Finn, C., and Levine, S. Deep online learn-
ing via meta-learning: Continual adaptation for model-
based rl. arXiv preprint arXiv:1812.07671, 2018b.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 7559–7566. IEEE, 2018c.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 16–17,
2017.

Pearlmutter, B. A. Fast exact multiplication by the hessian.
Neural computation, 6(1):147–160, 1994.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine,
S. Epopt: Learning robust neural network policies us-
ing model ensembles. arXiv preprint arXiv:1610.01283,
2016.

Rajeswaran, A., Mordatch, I., and Kumar, V. A game theo-
retic framework for model based reinforcement learning.
arXiv preprint arXiv:2004.07804, 2020.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine,
S. Efficient off-policy meta-reinforcement learning
via probabilistic context variables. arXiv preprint
arXiv:1903.08254, 2019.

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. arXiv preprint
arXiv:1810.06784, 2018.

Sæmundsson, S., Hofmann, K., and Deisenroth, M. P. Meta
reinforcement learning with latent variable gaussian pro-
cesses. arXiv preprint arXiv:1803.07551, 2018.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Schulze, S., Whiteson, S., Zintgraf, L., Igl, M., Gal, Y.,
Shiarlis, K., and Hofmann, K. Varibad: a very good
method for bayes-adaptive deep rl via meta-learning. In-
ternational Conference on Learning Representations.

Settles, B. Active learning literature survey. Technical
report, University of Wisconsin-Madison Department of
Computer Sciences, 2009.

Silberman, M. Active Learning: 101 Strategies To Teach
Any Subject. ERIC, 1996.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Advances in neural information
processing systems, pp. 4077–4087, 2017.

Sutton, R. S. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic pro-
gramming. In Machine learning proceedings 1990, pp.
216–224. Elsevier, 1990.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural in-
formation processing systems, pp. 1057–1063, 2000.

Thrun, S. Is learning the n-th thing any easier than learning
the first? In Advances in neural information processing
systems, pp. 640–646, 1996.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media, 2012.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Model-based Adversarial Meta-Reinforcement Learning

Utgoff, P. E. Shift of bias for inductive concept learning.
Machine learning: An artificial intelligence approach, 2:
107–148, 1986.

Wang, H., Zhou, J., and He, X. Learning context-aware
task reasoning for efficient meta-reinforcement learning.
arXiv preprint arXiv:2003.01373, 2020.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Wang, T. and Ba, J. Exploring model-based planning with
policy networks. arXiv preprint arXiv:1906.08649, 2019.

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Lan-
glois, E., Zhang, S., Zhang, G., Abbeel, P., and Ba,
J. Benchmarking model-based reinforcement learning.
arXiv preprint arXiv:1907.02057, 2019.

Wikipedia contributors. Implicit function theorem
— Wikipedia, the free encyclopedia, 2020. URL
https://en.wikipedia.org/w/index.
php?title=Implicit_function_theorem&
oldid=953711659. [Online; accessed 2-June-2020].

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Zintgraf, L., Igl, M., Shiarlis, K., Mahajan, A., Hofmann,
K., and Whiteson, S. Variational task embeddings for fast
adapta-tion in deep reinforcement learning. In Interna-
tional Conference on Learning Representations Workshop
on Structure & Priors in Reinforcement Learning, 2019.

A. Omitted Derivations
A.1. Jacobian of θ̂ with respect to ψ

We begin with an observation: first-order optimality condi-
tions for θ̂ necessitate that

∂η̂

∂θ

∣∣∣∣
θ̂

= 0 (8)

Then, the implicit function theorem tells us that for suffi-
ciently small ∆ψ, there exists ∆θ as a function of ∆ψ such
that

∂η̂

∂θ

∣∣∣∣
θ̂+∆θ,ψ+∆ψ

= 0 (9)

To first order, we have

∂η̂

∂θ

∣∣∣∣
θ̂+∆θ,ψ+∆ψ

≈ ∂η̂

∂θ

∣∣∣∣
θ̂︸ ︷︷ ︸

0

+
∂2η̂

∂θ∂θ>

∣∣∣∣
θ̂

∆θ+
∂2η̂

∂θ∂ψ>

∣∣∣∣
θ̂

∆ψ

(10)

Thus, solving for ∆θ as a function of ∆ψ and taking the
limit as ∆ψ → 0, we obtain

∂θ̂

∂ψ>
= −

(
∂2η̂

∂θ∂θ>

∣∣∣∣
θ̂

)−1
∂2η̂

∂θ∂ψ>

∣∣∣∣
θ̂

(11)

A.2. Policy Hessian

Fix dynamics T , and let πθ(τ) denote the probability density
of trajectory τ under policy πθ. Then we have

∂ log πθ(τ)

∂θ
=

∂πθ(τ)
∂θ

πθ(τ)
(12)

i.e.
∂πθ(τ)

∂θ
= πθ(τ)

∂ log πθ(τ)

∂θ
(13)

Thus we get the basic (REINFORCE) policy gradient

∂η

∂θ
=

∂

∂θ

∫
πθ(τ)Rψ(τ) dτ (14)

=

∫
∂πθ(τ)

∂θ
Rψ(τ) dτ (15)

= E
τ∼πθ,T

[
∂ log πθ(τ)

∂θ
Rψ(τ)

]
. (16)

Differentiating our earlier expression for ∂πθ(τ)
∂θ once more,

and then reusing that same expression again, we have

∂2πθ(τ)

∂θ∂θ>
(17)

=
∂πθ(τ)

∂θ

∂ log πθ(τ)

∂θ>
+ πθ(τ)

∂2 log πθ(τ)

∂θ∂θ>
(18)

= πθ(τ)

(
∂ log πθ(τ)

∂θ

∂ log πθ(τ)

∂θ>
+
∂2 log πθ(τ)

∂θ∂θ>

)
(19)

Thus

∂2η

∂θ∂θ>
(20)

=
∂2

∂θ∂θ>

∫
πθ(τ)Rψ(τ) dτ (21)

=

∫
∂2πθ(τ)

∂θ∂θ>
Rψ(τ) dτ (22)

=

∫
πθ(τ)

(
∂ log πθ(τ)

∂θ

∂ log πθ(τ)

∂θ>
+
∂2 log πθ(τ)

∂θ∂θ>

)
Rψ(τ) dτ

(23)

= E
τ∼πθ,T

[(
∂ log πθ(τ)

∂θ

∂ log πθ(τ)

∂θ>
+
∂2 log πθ(τ)

∂θ∂θ>

)
Rψ(τ)

]
.

(24)

https://en.wikipedia.org/w/index.php?title=Implicit_function_theorem&oldid=953711659
https://en.wikipedia.org/w/index.php?title=Implicit_function_theorem&oldid=953711659
https://en.wikipedia.org/w/index.php?title=Implicit_function_theorem&oldid=953711659

Model-based Adversarial Meta-Reinforcement Learning

B. AdMRL: a Practical Implementation
Algorithm 1 gives pseudo-code for our algorithm AdMRL,
which alternates the updates of dynamics T̂φ and tasks ψ.
Let VirtualTraining(θ, φ, ψ,D, n) be the shorthand for the
procedure of learning a dynamics φ using data D and then
optimizing a policy from initialization θ on tasks ψ under
dynamics φ with n virtual steps. Here parameterized argu-
ments of the procedure are referred to by their parameters
(so that the resulting policy, dynamics, are written in θ and
φ). For each training task parameterized by ψ, we first ini-
tialize the policy randomly, and optimize a policy on the
learned dynamics until convergence (Line 5), which we refer
to as zero-shot adaptation. We then use the obtained policy
πθ̂ to collect data from real environment and perform the
MBRL algorithm SLBO (Luo et al., 2018) by interleaving
collecting samples, updating models and optimizing policies
(Line 6). After collecting samples and performing SLBO
updates, we then get an nearly optimal policy πθ? .

Then we update the task parameter by gradient ascent. With
the policy πθ̂ and πθ? , we compute each gradient component
(Line 10, 11) and obtain the gradient w.r.t task parameters
(Line 12) and perform gradient ascent for the task parameter
ψ (Line 13). Now we complete an outer-iteration. Note that
for the first training task, we skip the zero-shot adaptation
phase and only perform SLBO updates because our dynam-
ical model is untrained. Moreover, because the zero-shot
adaptation step is not done, we cannot technically perform
our tasks update either because the tasks derivative depends
on πθ̂, the result of zero-shot adaption (Line 9).

Implementation Details. Computing Eq. (5) for each di-
mension of ψ involves an inverse-Hessian-vector product.
We note that we can compute Eq. (5) by approximately
solving the equation Ax = b, where A is ∂2η̂

∂θ∂θ>

∣∣∣
θ̂

and

b is ∂2η̂
∂θ∂ψ>

∣∣∣
θ̂
. However, in large-scale problems (e.g. θ

has thousands of dimensions), it is costly (in computation
and memory) to form the full matrix A. Instead, the con-
jugate gradient method provides a way to approximately
solve the equation Ax = b without forming the full ma-
trix of A, provided we can compute the mapping x 7→ Ax.
The corresponding Hessian-vector product can be computed
as efficiently as evaluating the loss function (Pearlmutter,
1994) up to a universal multiplicative factor. Please re-
fer to Appendix B to see how to implement it concretely.
In practice, we found that the matrix of A is always not
positive-definite, which hinders the convergence of con-
jugate gradient method. Therefore, we turn to solve the
equivalent equation A>Ax = A>b.

The section discusses how to compute Ax using standard
automatic differentiation packages. We first define the fol-

Algorithm 1 AdMRL: Model-based Adversarial Meta-
Reinforcement Learning

1: Initialize model parameter φ, task parameter ψ and
dataset D ← ∅

2: for ntasks iterations do
3: Initialize policy parameter θ randomly
4: if D 6= ∅ then
5: θ̂ = VirtualTraining(θ, φ, ψ,D, nzeroshot)
6: for nslbo iterations do
7: D ← D∪ { ncollect collected samples on the real

environments T ? using πθ with noise }
8: θ? = VirtualTraining(θ, φ, ψ,D, ninner)
9: if first task then randomly re-initialize ψ; otherwise

then
10: Compute gradients ∂η?

∂ψ |θ? and ∂η?

∂ψ |θ̂ using Eq. 3;

compute ∂η?

∂θ |θ̂ using Eq. 4; compute ∂2η̂
∂θ∂ψ> |θ̂ us-

ing Eq. 6; compute ∂2η̂φ
∂θ∂θ>

using Eq. 7.

11: Efficiently compute ∂θ̂
∂ψ> using conjugate gradient

method. (see Section B)
12: Compute the final gradient ∂L

∂ψ = ∂η?

∂ψ |θ? −
(∂θ̂

>

∂ψ
∂η?

∂θ |θ̂ + ∂η?

∂ψ |θ̂)
13: Perform task parameters projected gradient ascent

ψ ← ΠΨ(ψ + α∂L∂ψ)

lowing function:

ηh(θ1, θ2, θ3, θ, T̂φ, ψ) (25)
= E
πθ,T̂φ

[(log πθ1(at|st) log πθ2(at|st) + log πθ3(at|st))Rψ(τ)] ,

(26)

where θ1, θ2, θ3 are parameter copies of θ. We then use
Hessian-vector product to avoid directly computing the sec-
ond derivatives. Specifically, we compute the two parts in
Eq. (7) respectively by first differentiating ηh w.r.t θ1 and
θ>2

g1 =
∂

∂θ1
(
∂ηh
∂θ>2
·x) = ∂ log πθ1(at|st)

∂θ1

(
∂ log πθ2(at|st)

∂θ>2
· x
)
Rψ(τ),

(27)
and then differentiate ηh w.r.t θ3 for twice

g2 =
∂

∂θ3

(
∂ηh
∂θ>3

· x
)

=
∂

∂θ3

(
∂ log πθ3(at|st)

∂θ>3
· x
)
Rψ(τ),

(28)
and thus we have Ax = g1 + g2.

In terms of time complexity, computing the gradient w.r.t
task parameters is quite efficient compared to other steps.
On one hand, in each task iteration, for the MBRL algorithm,
we need to collect samples for dynamical model fitting, and
then rollout m virtual samples using the learned dynami-
cal model for policy update to solve the task, which takes
O(m(dφ + dθ)) time complexity, where dφ and dθ denote
the dimensionality of φ and θ. On the other hand, we only

Model-based Adversarial Meta-Reinforcement Learning

need to update the task parameter once in each task iteration,
which takes O(dψdθ) time complexity by using conjugate
gradient descent, where dψ denotes the dimensionality of
ψ. In practice, for MBRL algorithm, we often need a large
amount of virtual samples m (e.g., millions of) to solve the
tasks. In the meantime, the dimension of task parameter dψ
is a small constant and we have dθ � dφ. Therefore, in
our algorithm, the runtime of computing gradient w.r.t task
parameters is negligible.

In terms of sample complexity, although computing the
gradient estimator requires samples, in practice, however,
we can reuse the samples that collected and used by the
MBRL algorithm, which means we take almost no extra
samples to compute the gradient w.r.t task parameters.

Our code is available at https://github.com/
LinZichuan/AdMRL.

C. Experiments Setup
Low-dimensional velocity-control tasks. Following and
extending the setup of (Finn et al., 2017; Rakelly et al.,
2019), we first consider a family of environments and tasks
relating to controlling 2-D or 3-D velocity control tasks. We
consider three popular MuJoCo environments: Hopper,
Walker and Ant. For the 3-D task families, we have three
task parameters ψ = (ψx, ψy, ψz) which corresponds to the
target x-velocity, y-velocity, and z-position. Given the task
parameter, the agent’s goal is to match the target x and y
velocities and z position as much as possible. The reward
is defined as: rψ(vx, vy, z) = c1|vx − ψx|+ c2|vy − ψy|+
c3|hz−ψz|, where vx and vy denotes x and y velocities and
hz denotes z height, and c1, c2, c3 are handcrafted coeffi-
cients ensuring that each reward component contributes sim-
ilarly. The set of task parameters ψ is a 3-D box Ψ, which
can depend on the particular environment. E.g., Ant3D has
Ψ = [−3, 3]× [−3, 3]× [0.4, 0.6] and here the range for z-
position is chosen so that the target can be mostly achievable.
For a 2-D task, the setup is similar except only two of these
three values are targeted. We experiment with Hopper2D,
Walker2D and Ant2D. Details are given in Appendix D.
We note that we extend the 2-D settings in (Finn et al., 2017;
Rakelly et al., 2019) to 3-D because when the tasks param-
eters have more degrees of freedom, the task distribution
shifts become more prominent.

High-dimensional tasks. We also create a more complex
family of high-dimensional tasks to test the strength of our
algorithm in dealing with adversarial tasks among a large
family of tasks with more degrees of freedom. Specifically,
the reward function is linear in the post-transition state s′,
parameterized by task parameter ψ ∈ Rd (where d is the
state dimension): rψ(s, a, s′) = ψ>s′. Here the task pa-
rameter set is Ψ = [−1, 1]d. In other words, the agent’s

goal is to take action to make s′ most linearly correlated
with some target vector ψ. We use HalfCheetah where
d = 18. Note that to ensure that each state coordinate
contributes similar to the total reward, we normalize the
states by s−µ

σ before computing the reward function, where
µ, σ ∈ Rd are computed from all states collected by random
policy from real environments. The high-dimensional task
is called Cheetah-Highdim tasks. Tasks parameterized
in this way are surprisingly often semantically meaningful,
corresponding to rotations, jumping, etc. Appendix F shows
some visualization of the trajectories.

Training. We compare our approach with previous meta-
RL methods, including MAML (Finn et al., 2017) and
PEARL (Rakelly et al., 2019). The training process for
our algorithm is outlined in Algorithm 1. We build our algo-
rithm based on the code that (Luo et al., 2018) provides. We
use the publicly available code for our baselines MAML,
PEARL. Most hyper-parameters are taken directly from the
supplied implementation. We list all the hyper-parameters
used for all algorithms in the Appendix D. We note here that
we only run our algorithm for ntasks = 10 or ntasks = 20
training tasks, whereas we allow MAML and PEARL to
visit 150 tasks during the meta-training for generosity of
comparison. The training process of MAML and PEARL
requires 80 and 2.5 million samples respectively, while our
method AdMRL only requires 0.4 or 0.8 million samples.

Evaluation Metric. For low-dimensional tasks, we enumer-
ate tasks in a grid. For each 2-D environment (Hopper2D,
Walker2D, Ant2D) we evaluate at a grid of size 6×6. For
the 3-D tasks (Ant3D), we evaluate at a box of size 4×4×3.
For high-dimensional tasks, we randomly sample 20 testing
tasks uniformly on the boundary. For each task ψ, we com-
pare different algorithms in: A0(ψ) (zero-shot adaptation
performance with no samples), An(ψ) (adaptation perfor-
mance after collecting n samples) and Gn(ψ) , A?(ψ)−
An(ψ) (suboptimality gap), and Gmax

n = maxψ∈ΨGn(ψ)
(worst-case suboptimality gap). In our experiments, we com-
pare AdMRL with MAML and PEARL in all environments
with n = 2000, 4000, 6000. We also compare AdMRL with
distributional variants (e.g., model-based methods with uni-
form or gaussian task sampling distribution) in worst-case
tasks, high-dimensional tasks and out-of-distribution (OOD)
tasks.

D. Hyper-parameters
We experimented with the following task settings:
Hopper-2D with x velocity and z height from Ψ =
[−2, 2] × [1.2, 2.0], Walker-2D with x velocity and z
height from Ψ = [−2, 2] × [1.0, 1.8], Ant-2D with x
velocity and y velocity from Ψ = [−3, 3] × [−3, 3],
Ant-3D with x velocity, y velocity and z height from
Ψ = [−3, 3] × [−3, 3] × [0.4, 0.6], Cheetah-Highdim

https://github.com/LinZichuan/AdMRL
https://github.com/LinZichuan/AdMRL

Model-based Adversarial Meta-Reinforcement Learning

(a) (b)

Figure 5. (a) Sub-optimality gap Gn(ψ) of adapted policies n = 6K for each OOD test task ψ of adapted policies from AdMRL,
MB-Unif and MB-Gauss. Lighter means smaller, which is better. Training tasks are drawn from [−3, 3]2 (as shown in the red box) while
we only test the OOD tasks drawn from [−5, 5]2 (on the boundary). Our approach AdMRL generalizes much better and achieves lower
Gn(ψ) than MB-Unif and MB-Gauss on OOD tasks. (b) The worst-case sub-optimality gap Gmax

n in the number of adaptation samples n.

Figure 6. The high-dimensional tasks are surprisingly often semantically meaningful. Policies learned in these tasks can have diverse
behaviors, such as front flip (top row), back flip (middle row), jumping (bottom row), etc.

with Ψ = [−1, 1]18. We also list the coefficient of the
parameterized reward functions in Table 1.

Table 1. Coefficient in parameterized reward functions
Hopper2D Walker2D Ant2D Ant3D

c1 1 1 1 1
c2 0 0 1 1
c3 5 5 0 30

The hyper-parameters of MAML and PEARL are mostly
taken directly from the supplied implementation of (Finn
et al., 2017) and (Rakelly et al., 2019). We run MAML
for 500 training iterations: for each iteration, MAML uses
a meta-batch size of 40 (the number of tasks sampled at
each iteration) and a batch size of 20 (the number of roll-
outs used to compute the policy gradient updates). Overall,
MAML requires 80 million samples during meta training.
For PEARL, we first collect a batch of training tasks (150)
by uniformly sampling from Ψ. We run PEARL for 500
training iterations: for each iteration, PEARL randomly

sample 5 tasks and collects 1000 samples for each task from
both prior (400) and posterior (600) of the context variables;
for each gradient update, PEARL uses a meta-batch size of
10 and optimizes the parameters of actor, critic and context
encoder by 4000 steps of gradient descent. Overall, PEARL
requires 2.5 million samples during meta training.

For AdMRL, we first do zero-shot adaptation for each
task by 40 virtual steps (nzeroshot = 40). We then per-
form SLBO (Luo et al., 2018) by interleaving data collec-
tion, dynamical model fitting and policy updates, where
we use 3 outer iterations (nslbo = 3) and 20 inner itera-
tions (ninner = 20). For each inner iteration, we update
model for 100 steps (nmodel = 100), and update policy for
20 steps (npolicy = 20), each with 10000 virtual samples
(ntrpo = 10000). For the first task, we use nslbo = 10
(for Hopper2D, Walker2D) or nslbo = 20 (for Ant2D,
Ant3D, Cheetah-Highdim). For all tasks, we sweep
the learning rate α in {1,2,4,8,16,32} and we use α = 2 for
Hopper2D, α = 8 for Walker2D, α = 4 for Ant2D and
Ant3D, α = 16 for Cheetah-Highdim.

Model-based Adversarial Meta-Reinforcement Learning

E. Performance on out-of-distribution tasks
Figure 5 shows the performance of AdMRL on OOD tasks
in comparison to MB-Unif and MB-Gauss.

F. Examples of high-dimensional tasks
Figure 6 shows some trajectories in the high-dimensional
task Cheetah-Highdim.

G. Related Work
The idea of learning to learn was established in a series of
previous works (Utgoff, 1986; Schmidhuber, 1987; Thrun,
1996; Thrun & Pratt, 2012). These papers propose to build
a base learner for each task and train a meta-learner that
learns the shared structure of the base learners and outputs a
base learner for a new task. Recent literature mainly instan-
tiates this idea in two directions: (1) learning a meta-learner
to predict the base learner (Wang et al., 2016; Snell et al.,
2017); (2) learning to update the base learner (Hochreiter
et al., 2001; Bengio et al., 1992; Finn et al., 2017). The goal
of meta-reinforcement learning is to find a policy that can
quickly adapt to new tasks by collecting only a few trajec-
tories. In MAML (Finn et al., 2017), the shared structure
learned at train time is a set of policy parameters. Some
recent meta-RL algorithms propose to condition the pol-
icy on a latent representation of the task (Rakelly et al.,
2019; Zintgraf et al., 2019; Wang et al., 2020; Humplik
et al., 2019; Lan et al., 2019). Duan et al. (2016); Wang
et al. (2016) represent the reinforcement learning algorithm
as a recurrent network. Mendonca et al. (2019) improves
the sample efficiency during meta-training by consolidating
the solutions of individual off-policy learners into a single
meta-learner. Schulze et al. meta-learns to perform approx-
imate inference on an unknown task, and incorporate task
uncertainty directly during action selection. Rothfuss et al.
(2018) improves the sample-efficiency during meta-training
by overcoming the issue of poor credit assignment. Some
researches (Landolfi et al., 2019; Sæmundsson et al., 2018;
Nagabandi et al., 2018a;b) also propose to share a dynam-
ical model across tasks during meta-training and perform
model-based adaptation in new tasks. These approaches are
still distributional and suffers from distribution shift. We ad-
versarially choose training tasks to address the distribution
shift issue and show in the experiment section that we out-
perform the algorithm with randomly-chosen tasks. Gupta
et al. (2018) proposes unsupervised meta-RL, which con-
structs a task proposal mechanism based on a mutual infor-
mation objective, to automatically acquire an environment-
specific learning procedure. Kirsch et al. (2019) proposes
to meta-learn objective functions to generalize to different
environments. Mehta et al. (2020) attempts to mitigate the
distribution shift issue by introducing a curriculum for meta-

training tasks. Fakoor et al. (2019) proposes ways to reuse
data from the meta-training phase during meta-adaptation
by employing propensity score estimation. Concurrent work
by Mendonca et al. (2020) mitigates distribution shift issue
by meta-learning a model representation and relabel meta-
training experience during adaptation. Different from the
method above, our method addresses the distribution shift
issue in task level by taking a non-distributional perspective
and meta-training on adversarial tasks.

Model-based approaches have long been recognized as a
promising avenue for reducing sample complexity of RL
algorithms. One popular branch in MBRL is Dyna-style
algorithms (Sutton, 1990), which iterates between collecting
samples for model update and improving the policy with
virtual data generated by the learned model (Luo et al.,
2018; Janner et al., 2019; Wang & Ba, 2019; Chua et al.,
2018; Buckman et al., 2018; Kurutach et al., 2018; Feinberg
et al., 2018; Rajeswaran et al., 2020). Another branch of
MBRL produces policies based on model predictive control
(MPC), where at each time step the model is used to perform
planning over a short horizon to select actions (Chua et al.,
2018; Nagabandi et al., 2018c; Dong et al., 2019; Wang &
Ba, 2019).

Our approach is also related to active learning (Atlas et al.,
1990; Lewis & Gale, 1994; Silberman, 1996; Settles, 2009).
It aims to find the most useful or difficult data point whereas
we are operating in the task space. Our method is also re-
lated to curiosity-driven learning (Pathak et al., 2017; Burda
et al., 2018a;b), which defines intrinsic curiosity rewards
to encourage the agent to explore in an environment. In-
stead of exploring in state space, our method are “exploring”
in the task space. The work of Jin et al. (2020) aims to
compute the near-optimal policies for any reward function
by sufficient exploration, while we search for the reward
function with the worst suboptimality gap.

	Introduction
	Preliminaries
	Model-based Adversarial Meta-Reinforcement Learning
	Experiments
	Adaptation Performance Compared to Baselines
	Comparing with Model-based Baselines in Worst-case Sub-optimality Gap
	Out-of-distribution Performance

	Conclusion
	Omitted Derivations
	Jacobian of with respect to
	Policy Hessian

	AdMRL: a Practical Implementation
	Experiments Setup
	Hyper-parameters
	Performance on out-of-distribution tasks
	Examples of high-dimensional tasks
	Related Work

