
Learning Off-Policy with Online Planning

Harshit Sikchi 1 Wenxuan Zhou 1 David Held 1

Abstract

We propose Learning Off-Policy with Online
Planning (LOOP), combining the techniques from
model-based and model-free reinforcement learn-
ing algorithms. The agent learns a world model,
and then uses trajectory optimization with the
learned model to select actions. To sidestep the
myopic effect of fixed horizon trajectory optimiza-
tion, a value function is attached to the end of the
planning horizon. This value function is learned
through off-policy reinforcement learning, using
trajectory optimization as its behavior policy. Fur-
thermore, we introduce “actor-guided” trajectory
optimization to mitigate the actor-divergence is-
sue in the proposed method. We benchmark our
methods on continuous control tasks and demon-
strate a significant improvement over the underly-
ing model-based and model-free algorithms.

1. Introduction
Off-policy reinforcement learning is a widely used cate-
gory of model-free reinforcement learning. It usually aims
to learn a value function that encapsulates long-horizon
reasoning of the future reward. The policy is obtained by
directly taking the action that has the largest action-value
(Kalashnikov et al., 2018) in discrete action spaces or by
using a parameterized actor (Lillicrap et al., 2015) in contin-
uous settings. The effectiveness of the value function makes
model-free reinforcement learning achieve state-of-the-art
performance. However, it usually requires a huge amount
of interactions with the environment.

Model-based reinforcement learning provides a mechanism
for an agent to learn to perform a task by building a model of
the environment through experience. It can scale to highly
complex tasks while being orders of magnitude more sam-
ple efficient than model-free algorithms (Janner et al., 2019)
(Chua et al., 2018). One way to use the learned model is to
perform online planning with the model (Nagabandi et al.,
2019) during both training and testing. At each timestep,
the agent selects the best action by imagining possible roll-

1 Carnegie Mellon University, Pittsburgh, US.

outs with its learned model using Model Predictive Control
(MPC). However, the number of timesteps it looks into the
future is usually fixed to a small number. This is because the
required computation for planning grows exponentially with
the horizon. At the same time, the accuracy of the learned
model usually deteriorates with longer horizons (Feinberg
et al., 2018). Thus, this method often suffers from myopic
decisions for complex tasks.

To combine the advantages of sample efficiency of model-
based reinforcement learning and long-horizon reasoning
of model-free reinforcement learning, we propose Learn-
ing Off-Policy with Online Planning (LOOP). During on-
line planning, it augments the model-based rollout trajecto-
ries with a terminal value function learned using off-policy
model-free reinforcement learning. We refer to this policy
as the MPC policy. In this way, the agent can select actions
by evaluating short-horizon model rollouts as well as the
future consequences after the rollout terminates using the
value function. From another perspective, this model-based
planning agent can be treated as the behavior policy for the
off-policy algorithm that it uses to obtain the value func-
tion. Thus, compared to the underlying off-policy algorithm,
LOOP can interact with the environment more effectively
by planning over the learned model.

This combination introduces an issue in learning the value
function. Directly estimate the value function for the MPC
policy is computationally inefficient. Instead, if we use
the MPC policy as a behavior policy and learn the value-
function using an off-policy algorithm, the parameterized
actor that is used to update the value function might diverge
from the behavior policy and cause the “extrapolation is-
sue” (Fujimoto et al., 2018a) in Q-learning. We identify
this divergence to be critical in this combination of model-
based and model-free reinforcement learning. We propose
actor-guided trajectory optimization which improves learn-
ing performance by guiding trajectory optimization using
the model-free actor. We evaluate our method on OpenAI
Gym MuJoCo environments and demonstrate that the final
algorithm is able to learn more efficiently than the underly-
ing model-based and off-policy method.

Learning Off-Policy with Online Planning

Current State st

Q-Function

Parameterized Actor

Dynamics Model
Ensembles

Q(sH,aH)
Q(sH,aH)

Q(sH,aH)

r

r

Planning Online with CEM Off-Policy Learning with TD3

Replay
Buffer

Dynamics
Model
Rollouts

Terminal Q-function

Figure 1. Overview: We use online planning with learned dynamic
models and a terminal Q-function as the behavior policy. The
transitions are saved into the replay buffer to train the Q-function
and the dynamics model. The parameterized actor is also used to
guide online planning.

2. Related Work
Model-free reinforcement learning algorithms achieve high
performance for a lot of tasks, but these methods are noto-
riously sample-inefficient. Particularly, on-policy methods
like TRPO (Schulman et al. (2015)) and PPO (Schulman
et al. (2017)) require new samples to be collected for every
update to the policy. Off-policy methods like SAC (Haarnoja
et al., 2018) and TD3 (Fujimoto et al., 2018b), on the other
hand, are more sample-efficient than on-policy methods, as
they utilize all the experiences obtained in the past.

Model based-RL has seen a surge of interest recently, as
the benefits involve reducing the sample complexity while
maintaining asymptotic performance. Previous work ap-
proach model-based reinforcement learning using a learned
model and trajectory optimization (Chua et al., 2018; Naga-
bandi et al., 2019). These methods can reach asymptotic
performance when a large enough planning horizon is used.
They can also scale to complex tasks like rotating Baoding
balls in hand, but have the limitation of not being able to
reason for rewards beyond the planning horizon. Increasing
the planning horizon increases the number of trajectories
that should be sampled, and incurs a heavy computing cost.

Another line of work attempts to get the best of both model-
free and model-based reinforcement learning, Feinberg et al.
(2018) and Buckman et al. (2018) uses the model to im-
prove target value estimates and thus accelerates model-free
reinforcement learning. Schrittwieser et al. (2019) uses
Monte-Carlo Tree search with value estimates to constrain
the length and uses a policy to constrain the width of the
search tree. Their method utilizes on on-policy samples to
train the Q-function, making it sample inefficient. It works
on discrete action spaces with a latent dynamics structure.
(Hamrick et al., 2019) combines MCTS with Q-learning but
work under the setting of known model and discrete space.

The most related work to ours is Lowrey et al. (2018) where
they use trajectory optimization in the form of Model Pre-
dictive Control (MPC) as the behavior policy, and updates
the Q function by obtaining a target lookahead value esti-

mate using another instance of trajectory optimization. This
method is extremely slow as each batch of sampled data for
training the Q-function will require instances of trajectory
optimization that scales with batch size. Moreover, they
consider access to ground truth dynamics. Our method uses
trajectory optimization using a learned model and a terminal
value function as an exploratory policy, but the Q function
updates are performed entirely off policy.

3. Learning off-policy with online planning
In LOOP, we use trajectory optimization with a terminal
value function as the behavior policy that interacts with the
environment. This trajectory optimization in its naive form
is myopic and in many cases may not produce optimal poli-
cies for the task, since it does fixed horizon planning using a
learned model. We address this deficiency by having a value
function that reasons for the expected long term rewards
under the policy. Different from Lowrey et al. (2018), we
propose to utilize advances in off-policy learning to make
the algorithm computationally efficient. In this section, we
start by discussing the methods for learning the value func-
tion and the dynamics model. After that, we will further
discuss how these two are combined and how we deal with
the actor-divergence issue. Going forward, we will use the
notation πopt to denote the MPC policy that uses trajectory
optimization by forward simulation over learned models in
the model-based part and πφ to denote the parameterized
actor in the model-free part.

3.1. Learning Q-Function with the Model-free Actor

To learn a value function, we build our method upon TD3
(Fujimoto et al., 2018b) which is an off-policy algorithm
with an actor πφ and a value function Qθ. Note that other
off-policy algorithms can also be used here. We refer to the
actor πφ used to update the value function as the “parame-
terized actor”, in the sense that this actor is a parameterized
function, in our case a neural network. It will only be used
to update the value function and not be used to collect data
as standard TD3. The target value is calculated based on the
bellman equation:

Qtarget(st, at) = r(st, at) + γQ′θ(st+1, πφ(st+1)) (1)

To reduce overestimation error, TD3 calculates the target
value by taking the minimum over two Q-functions Qθ1
and Qθ2 , also called Clipped Double Q learning. Both Q-
functions are updated by minimizing the mean squared error:

MSE = E(s,a)∼D[Qtarget(s, a)−Qθ1,θ2(s, a))]2 (2)

where s, a are the state action pairs sampled from D, the
replay buffer of past experiences. The policy is updated by
maximizing Qθ1(s, πφ(s)).

Learning Off-Policy with Online Planning

3.2. Learning the Dynamics Model

Using the transitions collected, we train a dynamics model
using supervised learning. Given a state-action pair (s, a),
the network is trained to regress the difference δ between the
next state and the current state, parameterized as a Gaussian
distribution with a diagonal covariance matrix. We use prob-
abilistic ensembles of dynamics models that capture both
epistemic and aleatoric uncertainty in forward predictions
(Chua et al., 2018). Each model in the ensemble is initial-
ized with different weights and samples shuffled batches of
data during training.

3.3. Trajectory Optimization with a Terminal Value
Function

Given the dynamics model, the trajectory optimization pol-
icy πopt is the MPC-based policy that uses Cross-Entropy
Method (CEM) to select actions. CEM is a strong optimizer
and is shown (Nagabandi et al., 2019) to perform much
better than the random-shooting methods. This MPC policy
will be used as the behavior policy to collect data in the
environment. For each timestep, this policy will sample N
action sequences (a1, a2, ...aH), up to a fixed horizon from
a sampling distribution, and use the probabilistic dynamics
model to unroll the trajectory resulting from the action se-
quence. The cumulative return for each rollout is calculated
by

G =

H−1∑

i=0

(γir(si, ai)) + γHQθ(sH+1, aH+1) (3)

Note that in previous model-based reinforcement learning
methods such as (Nagabandi et al., 2019)(Chua et al., 2018),
the last term Q(sH , aH) is not present, resulting in an opti-
mization of the action sequences over a fixed horizon, which
might be shortsighted and result in a suboptimal trajectory
sequence. The top e highest scoring actions sequences, also
called elites, are selected and used to refine the sampling
distribution from which the action sequences are sampled
from.

Ai = {ai0, ai1, .., aiH}, Ai ∼ N (µm, Σm)∀i ∈ N
Aelites = sort(Ai)[−e :]

µm+1 = α ∗mean(Aelites) + (1− α)µm

Σm+1 = α ∗ var(Aelites) + (1− α)Σm

(4)

After M iterations of refinement, we take the mean of the
resulting action distribution as the final output. Following
MPC, only the first action of the sequence is executed. For
each subsequent timestep, replanning is performed. The
transitions will be collected into the replay buffer, which
will be used to train the models and the Q-function.

3.4. Actor-guided Trajectory Optimization (CEM-AG)

Combining trajectory optimization and off-policy learning
as described above might suffer from the issue of “actor
divergence”: There is a mismatch between the state-action
distribution induced by the model-free actor and the state-
action distribution of the MPC-based behavior policy that
collects data. As discussed in Fujimoto et al. (2018a), the
mismatch will lead to extrapolation errors in Q-learning and
cause overestimation bias that deteriorates performance. In
our experiments, we observe that naively using the method
in section 3.3 sometimes results in worse performance than
the original off-policy method due to this issue.

To mitigate the issue of actor divergence, we propose Actor-
guided Trajectory Optimization. At each timestep, we use
the model-free actor to propose a sequence of trajectories
by rolling out the dynamics model. These trajectories will
be included in the batch of samples in each CEM iteration.
When these trajectories are selected as elites in CEM, they
will guide the optimization and bring the solution closer
to the actor distribution. In our experiments, we observe
that CEM-AG effectively decreases actor divergence and
improves the performance of LOOP.

One alternative to solve the issue of actor divergence is to
incorporate the divergence as an additional cost in CEM
using Kullback-Leibler (KL) divergence or L2 distance. In
practice, we found this to be overly conservative and limits
the performance benefits from trajectory optimization.

4. Experimental Results
We benchmark the proposed method LOOP on four Ope-
nAI Gym MuJoCo environments: HalfCheetah, Hopper,
Walker, and InvertedPendulum. First, we evaluate the sam-
ple efficiency and performance of LOOP comparing to the
algorithms that it is built upon. We further analyze the effect
of Actor-guided CEM in reducing actor divergence.

4.1. Implementation Details

We use a horizon length of 5 for all the environments ex-
cept Walker (uses horizon=3). We use the author’s imple-
mentation of TD3 with the original hyperparameters. The
dynamics model ensemble has 5 neural networks each con-
sisting of 4 hidden layers, 200 hidden units each. We list all
the hyperparameters in Appendix 7.1. The CEM optimizer
uses 200 particles, sampled from a multivariate Gaussian
distribution. Each action sequence is passed through each
of the dynamics models and the average return is used as
the maximization objective in CEM. The MPC policy will
be used for the evaluation of LOOP. For CEM-AG we use
1 trajectory from πφ for every 20 trajectories from sam-
pling distribution. We use 5 random seeds to account for
variability in training.

Learning Off-Policy with Online Planning

TD3 LOOP ONLY_CEM randomQ LOOP without CEM-AG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

R
ew

ar
d

HalfCheetah

0 1 2 3 4 5
1e5

0

500

1000

1500

2000

2500

3000

3500

4000

Hopper

0 1 2 3 4 5 6 7

timesteps 1e5

0

1000

2000

3000

4000

5000

Av
er

ag
e

R
ew

ar
d

Walker

0.0 0.5 1.0 1.5 2.0 2.5 3.0

timesteps 1e4

0

200

400

600

800

1000

1200

InvertedPendulum

Figure 2. Training Performance of LOOP and its baselines on Mu-
JoCo tasks. Dashed line indicates the performance of TD3 at 1e6
timesteps.

4.2. Improvement over the underlying model-based
and model-free algorithm

As shown in Figure 2, LOOP (green curves) has significant
performance gains over TD3 in all of the four environments
due to better exploration. The red curves show the perfor-
mance of CEM with the same planning horizon as LOOP
but without the terminal Q-function, similar to Nagabandi
et al. (2019). We observe that fixed-horizon CEM performs
poorly in MuJoCo tasks due to the short planning horizon.
In Appendix 7.6, we further show that LOOP has compara-
ble performance to SOTA model-based methods.

4.3. Ablation Studies

To better understand the importance of different compo-
nents, we do ablation studies on the actor-guided CEM
and the parameterized actor. Using a simple CEM instead
of the Actor-guided CEM (CEM-AG), Walker completely
fails. The performance of other environments also drops
and sometimes becomes unstable. There are two hypotheses
of how actor-guided CEM helps. First, the trajectories pro-
posed by the parameterized actor might sometimes provide
a better solution to this optimization problem than CEM
alone. However, we observe that actor-guided CEM usually
achieves similar imagined reward as original CEM (Ap-
pendix 7.5). Second, actor-guided CEM biases the solutions
of CEM towards the parameterized actor, and thus reduces
extrapolation issue for off-policy learning. In Figure 3, we
compute the L2 distance between the action proposed by the
MPC policy (final output from CEM) and the TD3 policy.
We observe that actor-guided CEM in LOOP is indeed able

to reduce the actor-divergence compared to normal CEM. In
Appendix 7.3, we plot the ”actor usage” in CEM by measur-
ing the fraction of time when the trajectories suggested by
the parameterized actor are selected to be the elites in CEM.
It further demonstrates that the actor-proposed trajectories
are biasing the sampling distribution of CEM. In addition,
we show that using a Q-function trained with a random pol-
icy performs poorly in LOOP framework indicating that the
parameterized actor provides meaningful information for
MPC policy to reason beyond the planning horizon.

LOOP without CEM-AG LOOP

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

0

2

4

6

8

A
ct

or
 D

iv
er

ge
nc

e

HalfCheetah

0 1 2 3 4 5
1e5

0.5

1.0

1.5

2.0

2.5

3.0

Hopper

0 1 2 3 4 5 6 7

timesteps 1e5

1

2

3

4

5

6
A

ct
or

 D
iv

er
ge

nc
e

Walker

0.0 0.5 1.0 1.5 2.0 2.5 3.0

timesteps 1e4

0

1

2

3

4

5

6

7

InvertedPendulum

Figure 3. Actor-guided CEM reduces actor-divergence between
the MPC policy and the model-free actor.

5. Conclusion
In this work, we present a novel method that combines
model-free and model-based reinforcement learning. It al-
lows model-based online planning to reason about long-
horizon cumulative returns. From another perspective, it
improves upon the model-free algorithm by using a more
efficient behavior policy. We highlight the issues present
in applying a terminal Q-function to the online planning
methods and present the actor-guided solution. From the
experiments, we demonstrate that LOOP improves the per-
formance and sample-efficiency over the underlying model-
based and model-free method.

6. Future Work
As discussed above, we observe that the parameterized ac-
tor in our method has poor performance. We present our
attempted solution in Appendix 7.4. We look forward to
improving the performance of parameterized actor to fur-
ther improve LOOP. Another interesting direction is to use
Offline-RL methods (Levine et al., 2020) to reduce the actor-
divergence issue more systematically.

Learning Off-Policy with Online Planning

References
Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee,

H. Sample-efficient reinforcement learning with stochas-
tic ensemble value expansion. In Advances in Neural
Information Processing Systems, pp. 8224–8234, 2018.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems, pp. 4754–4765, 2018.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez,
J. E., and Levine, S. Model-based value estimation for ef-
ficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep re-
inforcement learning without exploration. arXiv preprint
arXiv:1812.02900, 2018a.

Fujimoto, S., Van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018b.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Pfaff, T.,
Weber, T., Buesing, L., and Battaglia, P. W. Combining q-
learning and search with amortized value estimates. arXiv
preprint arXiv:1912.02807, 2019.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization, 2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., et al. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning, 2015.

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., and
Mordatch, I. Plan online, learn offline: Efficient learning
and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Nagabandi, A., Konoglie, K., Levine, S., and Kumar, V.
Deep dynamics models for learning dexterous manipula-
tion. arXiv preprint arXiv:1909.11652, 2019.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265, 2019.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Wang, T. and Ba, J. Exploring model-based planning with
policy networks. arXiv preprint arXiv:1906.08649, 2019.

