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Abstract
We consider the problem of learning CMDPs in
batch mode. In particular, we study two general
classes of learning algorithms: direct policy learn-
ing (DPL), an imitation-learning based approach
which learns from expert trajectories, and model-
based learning. First, we derive sample complex-
ity bounds for DPL, and then show that model-
based learning from expert actions can, even with
a finite model class, be impossible. After relax-
ing the conditions under which the model-based
approach is expected to learn by allowing greater
coverage of state-action space, we provide sam-
ple complexity bounds for model-based learning
with finite model classes, showing that there exist
model classes with sample complexity exponen-
tial in their statistical complexity. Our results give
formal justification for imitation learning over
model-based learning in this setting.

1. Introduction
Families of context-dependent tasks are common in many
real-world settings. For example, controlling a UAV might
depend on factors such as the parameters of the specific
UAV’s weight and wingspan. After successfully controlling
several different UAVs, one might hope to be able to control
a new UAV quickly. Similarly, managing hypotension well
may depend on some specific properties of the patient; after
treating many distinct patients, one may hope to manage a
new patient well.

The question of efficiently learning a collection of related,
context-dependent tasks has been studied in the reinforce-
ment learning (RL) literature under many names such as
lifelong RL, multi-task RL, and, more generally, transfer
learning (see, e.g., Isele et al. (2017), D’Eramo et al. (2019)),
and Taylor and Stone (2009)). Even more specifically, the
question of learning to generalize from a collection of data
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has been considered, for example, in Brunskill and Li (2013)
and Lazaric and Restelli (2011). These works consider the
problem in an online setting and develop algorithmic contri-
butions in the batch setting, respectively.

In this work, we consider the following setting and question:
Suppose we are given a batch of trajectories obtained from
experts in multiple contexts, where each context’s transition
is parametrized by some observed parameter θ—a frame-
work called a Contextual MDP (CMDP). Will it be more
sample efficient to directly learn a policy from these data
(that is, imitate the expert), or to learn the transition function,
parametrized by θ, and then plan according to it? We derive
sample complexity bounds for direct policy learning (DPL);
our upper bound for DPL is polynomial in all the relevant
parameters.

Along the way, we prove impossibility results for learning
certain transitions in the model-based paradigm, while our
sample complexity upper bound for direct policy learning
holds in a more general sense. Next, we show that, under a
relaxed data generation process which affords greater cover-
age of state-action space, their exist hard families of CMDPs
for model-based learning. Finally, we derive a distribution-
dependent sample complexity upper bound for model-based
learning. Our theory provides a formal justification for why
imitation may be more successful than model-based learn-
ing in these settings, confirming trends observed in several
more empirical and application-oriented works, including
Yao et al. (2018) and Yang et al. (2019).

2. Related Work
Some papers have considered the problem when the context
is observable. In particular, Isele et al. (2017) describe the
problem as zero-shot transfer learning and provide an algo-
rithm which, under certain linearity assumptions regarding
the task descriptions, is able to perform zero-shot transfer
on large classes of MDPs. While they consider the prob-
lem both empirically and theoretically, they provide only
convergence results and not a finite-sample analysis.

Piot et al. (2013) consider Apprenticeship Learning,
whereby the learner has access to a set of states and expert
actions and is tasked with learning a policy via imitation.
They upper bound the difference in the value function of the
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learner with that of the expert in terms of the classification
error of the learner’s hypothesis. Our work most notably
differs from theirs in that we consider the contextual setting:
DPL reduces to this work in the case when |Θ| = 1, and
thus only a single MDP is being considered.

Other works have viewed the problem in the domain where
the parameter θ is latent. In particular, Lazaric and Restelli
(2011) consider the problem of transfer learning between
MDPs in the batch setting, where they design Q-value ap-
proximation algorithms designed to learn from a batch of
trajectories to plan on a new MDP with potentially differ-
ent transitions. We approach the problem of model-based
learning in a slightly different way, and instead extend off
the analysis of Chen and Jiang (2019). Finally, Yao et al.
(2018) consider both a direct policy approach to the unob-
servable problem—Direct Policy Transfer (DPT)—as well
as a model-based approach in an empirical setting. They
evaluate both learning strategies on a 2D Navigation task,
Acrobot, and a simulated HIV treatment domain, and find
that, empirically, DPT is more sample-efficient than model-
based learning.

3. Notation and Background
CMDPs A CMDP is a tuple
〈S,A,R, T, L, γ,Θ,Ps0 ,PΘ〉 where S ⊂ Rn and A
denote the state and (discrete) action space, respectively;
R : S × A → R is a reward function; γ, a discount
factor used in evaluating long-term return; Θ ⊂ Rd; and
T : S × A × Θ → ∆(S), is a conditional density over
next states given the current state, action, and value of θ
parametrizing the transition. The initial state s0 is drawn
from Ps0 ; at the start of an episode, the task parameter θ is
drawn from some Pθ. This is a slight simplification of the
standard definition of CMDP of Hallak et al. (2015) in that
we assume the reward and initial distribution remain the
same.

Setting In this paper, we consider the case in which the
learner is given a batch of m trajectories of length L, each
labeled with its associated context θ. There is one trajectory
per parameter setting θ, corresponding to real settings in
which one only gets to treat each patient once. This is in con-
trast to the setting of Hidden Parameter MDPs (HiP-MDPs),
introduced by Doshi-Velez and Konidaris (2016), in which
the parameter θ is latent. We will further assume that the
learner has access to the reward function, R. Throughout
this paper, we will assume that the trajectories are formed
via following a deterministic (but possibly time-dependent)
expert policy π that is α-optimal; that is, vLπ ≥ vLπ∗ − α,
where π∗ is the optimal deterministic time-dependent policy
and vLπ := E[

∑L−1
l=0 rl] is the expected undiscounted value

associated with the first L rewards, where here the expecta-

tion also includes the randomness with respect to the draw of
θ ∼ PΘ. We also define V Lπ (s; θ) = E[

∑L−1
l=0 rl|s0 = s, θ].

Goal Under this data generation process, the learner’s goal
is to return a policy π̂ : S×Θ×{0, . . . , L− 1} → A, such
that its value vlπ̂ is maximized. Specifically, we will define
the error in value of a hypothesis to be the amount by which
it is suboptimal. Following learning theory terminology, we
shall also refer to π̂ as the hypothesis returned by the learner.
We make two assumptions throughout: all rewards are in
[0, 1] and the hypothesis classH contains the expert policy,
π.

4. Sample Complexity Bounds for DPL
We now turn to our learning problems. One approach to
learning a hypothesis π̂ above is simply to treat the prob-
lem as a supervised learning problem and directly learn
the association between the inputs—the states s and the
task parameters θ—and the expert’s action a. In the fol-
lowing, we assume the learner is allowed to return any
hypothesis from some hypothesis class,H of functions from
S ×Θ× {0, . . . , L− 1} → A. In particular, just as in Yao
et al. (2018), who consider DPT, we assume that DPL is
agnostic to the reward sequence of the expert.

4.1. DPL Sample Complexity Upper Bound

We now derive a sample complexity upper bound for DPL.
Our analysis is similar to that of the standard agnostic PAC
learning upper bound, except that, in this setting, the batch
of data are not i.i.d, but rather, come from a Markov chain.
This, however, can be remedied, by simply replacing one
of the key concentration inequalities in the standard setting
(McDiarmid’s) with an analogous concentration inequal-
ity which applies to Markov chains, shown in Paulin et al.
(2015). We state the main result below, whose proof can be
found in Appendix Section A.1.
Theorem 4.1. Let the concept classH have Natarajan di-
mension d. There exists a learning algorithm A such that
for any distribution over the data, there exists m that is

O

(
L4d

ε2

(
log

(
Ld

ε

)
+
d

L
(log(L) + log(|A|)) + L2 log(1/δ)

))
receives at leastmL-long trajectories in the batch, thenA returns
a hypothesis inH which has error (in terms of undiscounted value)
at most ε+ α with probability at least 1− δ.

4.2. DPL Sample Complexity Lower Bound

We derive a DPL lower bound by constructing a family of
CMDPs for which the problem reduces to a standard PAC
learning problem that must be learned to error ε/L with
confidence δ. To do so, we put all the decision making
power on the action taken at the first state. We state the
theorem below: For a proof, see Appendix A.2.
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Theorem 4.2. There exist a family of CMDPs, a hypothesis
class, H of Natarajan dimension d, and value of m =

Ω
(
L(d+log(1/δ))

ε

)
, such that any learning algorithm given

at most m L-long trajectories returns a policy whose error
(in terms of value) is at most ε with probability at most 1−δ.

Our results thus give a Õ
(
L2d
ε + L5

ε

)
separation between

upper and lower bounds, in particular, highlighting how
poorly the bounds scale with L, but how slowly they sepa-
rate with δ and A; we discuss this further in Section 6.

5. Model-based Approach
In contrast to DPL, the model-based approach does not at-
tempt to directly learn the expert policy, but rather attempts
to learn the transition function parametrized by θ, and then
plan according to the transition and reward function. One
might believe that learning models would be more general
than trying to directly learn policies, because one can use
them to explore counterfactuals. Indeed, model-based learn-
ing is often the go-to approach in low data regimes (see,
e.g. Rasmussen (2003) versus Deisenroth et al. (2013),
Kamthe and Deisenroth (2017), Kocijan et al. (2004), Ko
et al. (2007)). However, we first show that this paradigm
of learning from expert actions is, in some finite settings,
impossible. Thus, we relax the data generation process
under which the model-based method is expected to learn.
Throughout our analysis, for simplicity, we will assume the
model-based approach has access to an oracle called PLAN,
which, upon receiving a transition function, T , and reward
function, R (which, as mentioned in Section 3, the learner
has access to), returns an optimal deterministic (possible
time-dependent) policy under T and R.

5.1. Impossibility of Model-Based Learning via Expert
Actions

The primary issue a model-based approach having access
only to an expert’s trajectory is the lack of coverage of
state-action space. In particular, it may be the case that a
large portion of the learner’s hypothesis class always agree
on the subset of state-action space traversed by the expert,
making it hard—and, in some cases impossible—to output
a low-error hypothesis with high confidence. We relegate
the construction to Appendix Section A.3 for space.

Theorem 5.1. There exist classes of CMDPs which, if the
learner must learn from expert trajectories, require infi-
nite sample complexity even with a finite hypothesis class
containing the true model.

Thus, while DPL can achieve suboptimality arbitrarily near
that of the expert with sufficiently many samples for finite
hypothesis classes, the same cannot be said of model-based
learning.

5.2. Hardness of Model-based Learning under
strictly-positive visitation distributions

The impossibility result above motivates the use of the fol-
lowing more standard framework under which we expect
batch model-based approaches to learn:

Definition 5.1.1 (Model-based Learning Data Generation
Process). Let µ be some distribution over S × A which
assigns non-zero mass/density to every (s, a) ∈ S ×A. For
each value of θ ∼ PΘ, the model-based approach draws L
pairs (s, a)

i.i.d∼ µ and, for each pair, draws s′ ∼ T (·|s, a, θ)
and r = R(s, a). The model-based approach then has
access to each of these one-step trajectories, labelled by θ.
We also make the assumption that every element of S ×A
is reachable in at most L steps.

Under the framework defined in Definition 5.1.1, we show
that there are still classes for which model-based learning is
hard. In fact, the construction of Chen and Jiang (2019) for
single MDPs gives a lower bound in our setting as well since
we can simply consider the CMDP which concentrates all
its mass on a single value of θ, thus reducing to the single
MDP case. In their construction, states are the nodes of a
complete tree with branching factor |A|, and all leaf nodes
give Bern(1/2) rewards while the leaf node corresponding
to the special edge gives Bern(1/2 + 3ε/2) reward. In
our setting, the construction of Krishnamurthy et al. (2016)
yields a sample complexity lower bound of Ω

(
|A|L
Lε2

)
when

active exploration is allowed. In Appendix Section A.4,
we give a construction of a family of MDPs, motivated by
contextual bandits and the constructions of Krishnamurthy
et al. (2016) and Auer et al. (2003), which yields a sample
complexity lower bound of Ω

(
|A|
ε2

)
, allowing exploration

for a hypothesis class of cardinality |A|. Our bound, on the
surface, is asymptotically lower than that of Krishnamurthy
et al. (2016); however, since the hypothesis class as well as
the size of each CMDP in the class have size only O(|A|),
our bound exhibits a stronger dependence on the size of the
model class. That is, our second bound gives a Ω

(
|H|
ε2

)
dependence on the size of the hypothesis class, rather than
the immediate Ω

(
|H|
Lε2

)
of Krishnamurthy et al. (2016).

The above constructions show how the sample complexity
for model-based learning can scale poorly with both horizon
as well as the size and statistical complexity of the hypoth-
esis class, but fail to show that model-based learning can
scale poorly with |Θ| when it is finite. Modi et al. (2017),
who consider online CMDPs, suggest constructing hard
CMDPs by making the MDP for each context hard and dis-
allowing any information corresponding to one context be
useful to another. While this technique gives a generic way
to increase any hard MDP lower bound by a multiplicative
factor of O(|Θ|) in expectation for CMDPs, it makes the
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hypothesis class have cardinality exponential in |Θ|, thus ex-
plaining away the factor of O(|Θ|). We give a construction
of a class of CMDPs in Appendix Section A.4, extending
off of Krishnamurthy et al. (2016), which yields the same
lower bound, but does so in a way that scales linearly with
|Θ|, while having a hypothesis class of cardinality |Θ|.

We now state our model-based lower bounds. The latter
bound is in terms of, C, the concentratability coefficient
of µ, which measures how much µ covers reachable state-
action pairs (for a definition, see Section 5.3).
Theorem 5.2. There exist hard families of CMDPs which
are subject to the following sample complexity lower bounds
(all are asymptotically at most Ω

(
|A|L
Lε2

)
): Ω

(
|A|L
Lε2

)
,

Ω
(
|H|
ε2

)
, and Ω

(
|Θ|
Lε2

)
with |Θ| = |H|. Furthermore, when

active exploration is not allowed, we have the following
lower bound, in expectation, with respect to the randomness
of drawing a leaf state from µ: Ω

(
C|A|L
Lε2

)
5.3. Model-based Learning Sample Complexity Upper

Bound

We now derive an upper bound for model-based learning
to contrast the above lower bound and, in particular, show
that the dependence on C is in fact linear. To do so, we
extend off the work of Chen & Jiang (2019), who derive an
upper bound for Fitted Q-Iteration (FQI). The FQI sample
complexity upper bound then immediately yields a sample
complexity upper bound for any model-based approach with
a finite model class.

We give a brief outline of finite-horizon FQI on a CMDP
below; it is essentially the same as FQI on a single MDP
except that Bellman backups are done with respect to the
context, θ. We first define this back-up and give the algo-
rithm below:
Definition 5.2.1. Define the lth Bellman backup of f :
S × Θ × {0, . . . , L} → R with respect to θ to be
(Tl(θ)f)(s, a) = R(s, a)+Es′∼T (·|s,a,θ)Vf (s′, θ, l), where
Vf (s, θ, l) = maxa∈A f(s, a, θ, l).

We will also assume FQI has access to a family of time-
indexedQ functions. That is we have a setF which contains
Q-value functions of the form Q : S×A×Θ×{0, . . . , L},
where Q(s, a, θ, l) = (Tl−1(θ)Q)(s, a) for l ≥ 1, and
Q(s, a, θ, 0) = 0. FQI on CMDPs operates in essentially
the same way as the finite horizon case except that all back-
ups and value functions are additionally parametrized by θ
(see Appendix Section A.5 for pseudocode). We now give
the definition of admissible distribution and the assumption
of concentratability of the data disitribution µwhich extends
that of Chen & Jiang (2019).
Definition 5.2.2 (Admissible Distribution). A conditional
distribution ν over S × A given θ ∈ Θ is said to be ad-

missible if there exists 0 ≤ l ≤ L − 1 if there exists
a possibly time-dependent stochastic policy π such that
(ν(θ))(s, a) = P [sl = s, ah = a|θ, s0 ∼ Ps0 , π]

Assumption 5.1 (Concentratability). We assume that there
exists some C <∞ such that, for any admissible distribu-
tion ν, (ν(θ))(s,a)

µ(s,a) ≤ C,∀(s, a, θ) ∈ S ×A×Θ.

With these definitions, we are able to derive a sample com-
plexity upper bound for FQI using techniques of Chen and
Jiang (2019), and then derive, as an immediate corollary, a
sample complexity upper bound for model-based learning;
again, we assume realizability for the hypothesis class H
and thus of the class F . We state the corollary below: for
the FQI upper bound as well as proofs, see Appendix A.5.

Corollary 5.2.1 (Model-based Upper Bound). Given the
finite hypothesis model classH, there exists a model-based
learning algorithmA and m with m = O

(
CL6 log(L|H|)

ε2

)
,

such that if A receives at least m samples of L one-step
trajectories under µ, then it returns a policy with error at
most ε with probability at least 1− δ.

6. Discussion
In this paper we investigate the sample complexities of imi-
tation learning of CMDPs, as well as model-based learning.
Our results indicate that DPL is, theoretically, more sound
than model-based approaches in that the latter scales with
respect to the concentratability coefficient of the distribution
µ. While both upper bounds scale polynomially in all the
relevant parameters—and, importantly, in the complexity of
hypothesis class—our upper bound for model-based learn-
ing scales with C. As our lower bound for model-based
learning shows, this additional dependence is, in fact, neces-
sary. This highlights the importance of the data generation
process for model-based learning: When data is gotten from
expert trajectories, model-based learning can be impossible
even with finite hypothesis classes, but even when data is
drawn i.i.d. from the distribution µ, model-based learning
depends greatly on the coverage of reachable state-action
pairs.

We believe the following are primary interests for future
work: Deriving general model-based sample complexity
upper bounds which do not grow, even logarithmically with
|H|, but rather grow with some other complexity measure of
the hypothesis class which can be finite even for infiniteH
(e.g. perhaps with an extension of witness rank introduced
in Sun et al. (2018)); investigating a tighter relationship
between the upper and lower bounds for DPL, in particu-
lar, bounds whose degree of separation scales more slowly
with L; and understanding the sample complexity of sim-
ilar imitation learning and model-based algorithms in the
unobserved parameter setting of HiP-MDPs.
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