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Abstract

The standard risk minimization paradigm of ma-
chine learning is brittle when operating in environ-
ments whose test distributions are different from
the training distribution due to spurious correla-
tions. Training on data from many environments
and finding invariant predictors reduces the ef-
fect of spurious features by concentrating models
on features that have a causal relationship with
the outcome. Such invariant risk minimization
was posed as a bi-level optimization problem by
Arjovsky et al. (2019). In this work, we pose
invariant risk minimization as finding the Nash
equilibrium of an ensemble game among several
environments and show that the set of Nash equi-
libria for the proposed game are equivalent to the
set of invariant predictors obtained by the bi-level
optimization even with nonlinear classifiers and
transformations.

1. Introduction

Machine learning is rife with embarrassing examples of spu-
rious correlations that fail to hold outside a specific training
(and identically distributed test) distribution. For example,
Beery et al. (2018) trained a convolutional neural network
(CNN) to classify camels from cows. Most of the pictures
of cows had green pastures, while most pictures of camels
were in deserts. The CNN picked up the spurious correla-
tion: it associated green pastures with cows and failed to
classify pictures of cows on sandy beaches correctly.

To address the problem of models inheriting spurious cor-
relations, Arjovsky et al. (2019) show that one can exploit
the varying degrees of spurious correlation naturally present
in data collected from multiple data sources to learn robust
predictors. The authors propose to find a representation ®
such that the optimal classifier given @ is invariant across
training environments. This formulation leads to a challeng-
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ing bi-level optimization, which the authors relax by fixing
a simple linear classifier and learning a representation ¢
such that the classifier is “approximately locally optimal” in
all the training environments.

In this work, we take a different approach. We create an
ensemble of classifiers with each environment controlling
one component of the ensemble. Each environment uses
the entire ensemble to make predictions. We let all the en-
vironments play a game where each environment’s action
is to decide its contribution to the ensemble such that it
minimizes its risk. Remarkably, we establish that the set
of predictors that solve the ensemble game is equal to the
set of invariant predictors across the training environments;
this result holds for a large class of non-linear classifiers.
We propose best response dynamics, which has a simple
implementation, to solve the game. We do not restrict clas-
sifiers to be linear, which was emphasized as a direction for
future work by Arjovsky et al. (2019). Broadly speaking, we
believe that the game-theoretic perspective herein can open
up a new paradigm to address the problem of invariance.

The invariant risk minimization (IRM) formulation of Ar-
jovsky et al. (2019) is the most related work, and is mo-
tivated from the theory of causality and causal Bayesian
networks (CBNs) (Pearl, 1995). A variable y is caused by
a set of non-spurious actual causal factors Tp,(,) if and
only if in all environments where y has not been intervened
on, the conditional probability P(y|zpa(,)) remains invari-
ant. This is called the modularity condition (Bareinboim
etal.,2012). Related and similar notions are the independent
causal mechanism principle (Scholkopf et al., 2012; Janzing
& Scholkopf, 2010; Janzing et al., 2012) and the invariant
causal prediction principle (Peters et al., 2016; Heinze-
Deml et al., 2018). These principles imply that if all the
environments (train and test) are modeled by interventions
that do not affect the causal mechanism of target variable y,
then a classifier conservatively trained on the transformation
that involves the causal factors (®(z) = Tpa(y)) to predict
1 is robust to unseen interventions.

Statistical machine learning has dealt with the distribution
shift between the training distribution and test distribution in
a number of ways. Sample weighting attempts to match test
and train distributions by reweighting samples. It typically
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assumes that the probability of labels given all covariates
does not shift. Domain adaptation tries to find a represen-
tation ® whose distribution is invariant across source and
target domains, and is known to have serious limitations
even when the marginal distribution of labels shift across
environments. When only training data sources are given,
robust optimization techniques find the worst case loss over
all possible convex combinations of the training sources,
assuming that the test distribution is within the convex hull
of training distributions, which is not true in many settings.

2. Preliminaries

2.1. Game Theory Concepts

LetT' = (N, {S;}ien, {ui}ien) be the tuple representing
a standard normal form game, where N is the finite set of
players. Player ¢ € N takes actions from a strategy set .S;.
The utility of player ¢ is u; : S — R, where we write the
joint set S' = II;c v S;. The joint strategy of all the players
is given as s € S, the strategy of player ¢ is s; and the
strategy of the rest of players is s_; = (s, ), ;. A strategy
s* is said to be a pure strategy Nash equilibrium (NE) if it
satisfies u; (s}, s* ;) > w;(k,s*,),Vk € S;,Vi € N.

2.2. Invariant Risk Minimization

Consider datasets {(z¢,y¢)}i¢, from multiple training en-
vironments e € &,.. The feature value z{ € X and the
corresponding labels y§ € Y, where ¥ C R" and Y C RF.
Define a predictor f : X — R*. IRM uses these multiple
datasets to construct a predictor f that performs well across
many unseen environments &,;;. Define the risk achieved
by f in environment e as R(f) = Exe y« [((f(X¢),Y*)],
where ¢ is the loss when f(X) is the predicted value and Y
is the corresponding label.

Invariant predictor: We say that a data representation
® : X — Z C R?elicits an invariant predictor w o ® across
environments e € & if there is a classifier w : Z — RF
that achieves the minimum risk for all the environments
w € arg mingey,, R°(w o ®). The set of all the mappings
® is given as Hq and the set of all the classifiers is given
as H,,. IRM may be phrased as the following constrained
optimization problem (Arjovsky et al., 2019):

Z Ré(w o @)
e€Esr 1)
s.t. w € arg min R®(w o ®), Ve € &,,.

WEH

min
PEH , WEHw

If (@, w) satisfies the above constraints, then w o ® is an
invariant predictor across the environments &;,.. Define
the set of representations and the corresponding classifiers,
(®, w) that satisfy the constraints in the above problem (1)
as SV, where IV stands for invariant. Also, define the set of
invariant predictors wo ® as SV = {wo ® |(®,w) € SV}.

Remark. The sets S'V, SV depend on the choice of classi-
fier class H,, and representation class Hg. We avoid making
this dependence explicit until later sections.

Members of S'V are equivalently the solutions to:
Ré(wo @) < R*(wo @), Yo € Hyy, Ve €& (2)

The main result of Arjovsky et al. (2019) states that if H,,
and H¢ are from the class of linear models, i.e., w(z) =
wiz, where w € R?, and ®(z) = ®z with & € R4,
then under certain conditions on the data generation process
and training environments &,,., the solution to (2) remains
invariant in £,;.

3. Ensemble IRM Games
3.1. Game-Theoretic Reformulation

Optimization problem (1) can be quite challenging to solve.
We introduce an alternate characterization based on game
theory to solve it. We endow each environment with its
own classifier w® € H,,. We use a simple ensemble to
construct an overall classifier w® : Z — RF defined as

av _ _1 [Eer q av _
w = Zq:l w?, where for each z € Z, w*(z) =

|5tr‘
i Ei,vl Z(‘fz‘jl w?(z). (The av stands for average.) Consider
the example of binary classification with two environments
{e1,e2}; w® = [w§,w§] is the classifier of environment
e, where each component is the score for each class. We
define the component j of the ensemble classifier w®’ as

w _ WS .
wj? = —t——. These scores are input to a softmax;
the final probability assigned to class j for an input z is

J
wa? (z)
e J

761”(11'0(@-&-6”5“(2) .

We require all the environments to use this ensemble w*’.
We want to solve the following new optimization problem.

min R*(w™ o @)
BEHq, w7 EHy
e€yr
1
s.t. w® €arg min R® | — {we + wq} od Vee &
g BEEH,, ‘gtr| Z ’ tr

qFe

We can equivalently restate the above as:

. T e
eclyr
1
st R° | — [we + qu} o®
[Eer] q#e
1
< R° 7[@64'211)(1} o® | Yu e Hy Ve € &y
[Eer] qte
3)
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What are the advantages of this formulation (3)?

e Using the ensemble automatically enforces invariance
across environments.

e Each environment is free to select the classifier w®
from the entire set H,,, unlike in (1), where all envi-
ronments’ choices are required to be the same.

e The constraints in (3) are equivalent to the set of pure
NE of a game that we define next.

The game is played between |E;,| players, with each player
corresponding to an environment e. The set of actions of the
environment e are w® € H,,. At the start of the game, a rep-
resentation P is selected from the set Hq, which is observed
by all the environments. The utility function for an envi-
ronment e is defined as u.[w®,w™ ¢, ®] = —R*(w*, D),
where w™¢ = {w?},-. is the set of choices of all environ-
ments but e. We call this game Ensemble Invariant Risk
Minimization (EIRM) and express it as a tuple

[EIRM _ (5tr,7'l<1>, {Hw}lf:“l", {ue}ee&r).

We represent a pure NE as a tuple (<I>, {wq}lf:“i‘) Since
each pure NE depends on ®, we include it as a part of the
tuple. We define the set of pure NE as SE'RM. Construct a

set of the ensemble predictors constructed from NE as

[Etrl
e = {[ > ow @ ) s

SEIRM

Members of are equivalently the solutions to

Ue[w, W™ B > u. [0, w™¢, B], Yw® € Hyy, Ve € Ep.
“4)

If we replace u.[w®, w™¢, ®] with —R®(w*’, @), we obtain
the inequalities in (3). So far we have defined the game and
given its relationship to the problem in (3).

3.2. Equivalence Between NE and Invariant Predictors

What is the relationship between the predictors obtained
from NE S¥”M and invariant predictors S' ?

Remarkably, these two sets are the same under very mild
conditions. Before we show this result, we establish a
stronger result and this result will follow from it.

We use the set SE'RM to construct a new set. To each tuple
(<I>, {wq}!f:"ll)) € SERM qugment the ensemble classifier

1 Z\quwl»l w to get (@7 {MQ}|§T‘7U;““). We call

|5n«| q=1
the set of these new tuples SE'RM,

wav —

We use the set S'V to construct a new set. Consider an
element (®,w) € S"V. We define a decomposition for w

in terms of the environment-specific classifiers as follows:
1 [E¢r] g q q

B Zq:l w9, where w? € Hy. w? = w,Vq € &,

is one trivial decomposition. We use each such decomposi-

tion and augment the tuple to obtain (<I>, {wq}|g"T| w). We

w =

q=1>
call this set of new tuples SWV.

Both the sets S and SE'RM consist of tuples of representa-
tion, set of environment specific classifiers, and the ensem-
ble classifier. We ask an even more interesting question than
the one above. Is the set of representations, environment spe-
cific classifiers, and the ensembles found by playing EIRM
(4) or solving IRM (2) the same? If these two sets are equal,
then equality between SE'RM and S'V follows trivially.

We state the only assumption we need.

Assumption 1. Affine closure: The class of functions H.,
is closed under the following operations.

e Finite sum: If wy € H, and wy € H,, then wy +
wy € Hy, where for every z € Z, (w1 + w2)(2) =
wi(2) + wa(2)

e Scalar multiplication: For any ¢ € R and w € H,,
cw € Moy, where for every z € Z, (cw)(z) = cxw(z)

The addition of the functions and scalar multiplication are
defined in a standard pointwise manner. Therefore, the class
H., also forms a vector space. We now state the main result.

Theorem 1. If Assumption 1 holds, then SV = SE'RM

The proofs of all results are in the full paper (Ahuja et al.,
2020).

Corollary 1. If Assumption 1 holds, then SV = SERM

Significance of Theorem 1 and Corollary 1

e From a computational standpoint, this equivalence per-
mits tools from game theory to find NE of the EIRM
game and, as a result, the invariant predictors.

e From a theoretical standpoint, this equivalence permits
to use game theory to analyze the solutions of the
EIRM game and understand the invariant predictors.

e In Theorem 9 of Arjovsky et al. (2019), it was shown
for linear classifiers and linear representations that the
invariant predictors generalize to a large set of unseen
environments under certain conditions. Since our re-
sult holds for linear classifiers (but is even broader),
the generalization result continues to hold for the pre-
dictors found by playing the EIRM game.

Role of representation ®. We investigate the scenario
when we fix ® to the identity mapping; this will motivate
one of our approaches. Define the set SEIRM (®) as the set of
ensemble predictors arrived at by playing the EIRM game
using a fixed representation representation ®.! Similarly,

IU@SElRM (@) — SEIRM
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we define a set S V(®) as the set of invariant predictors
derived using the representation ®. From Theorem 1, it
follows that SERM(d) = SV(®). We modify some of the
earlier notations for results to follow. The set of predictors
that result from the EIRM game SERM and the sets of in-
variant predictors SV are defined for a family of maps @
with co-domain Z. We make the co-domain Z explicit in
the notation. We write SERM for SERM and S for S'.

Assumption 2. ¢ € Hg satisfies the following

e Bijective: 3 &' : Z — X such that Vx € X,
<<I>*1 o <I>> (x) =z, andVz € Z (<I> o @fl)(z) =z
Both X and Z are subsets of R™

o ® is differentiable and Lipschitz continuous.

LP(Z): set of functions f : Z — Rs.t. [ |f[Pdu < oo
Assumption 3. H,, = LP(Z2).

Define a subset S C SY consisting of invariant predictors
that are in LP(X), ie., SY = {u | u € SY and u €
LP(X)}. Let ® = |, where | : X — X is the identity
mapping. Following the above notation, the set of invariant
predictors and the set of ensemble predictors obtained from
NE are S (1) and SERM(1) respectively.

Theorem 2. If Assumptions 2 and 3 are satisfied and 5"2\/
is non-empty, then S = SY (1) = SERM(1)

Significance of Theorem 2. If we fix the representation to
identity and play the EIRM game, then it is sufficient to
recover all the invariant predictors (with bounded L” norm)
that can be obtained using all the representations ® € Hg.
Therefore, we can simply fix & = | and use game-theoretic
algorithms for learning equilibria.

3.3. Existence of NE of T''RM and Invariant Predictors

In this section, we first argue that there are many settings
when both invariant predictors and the NE exist.

Ilustration through generative models. We use a sim-
plified version of the model described by Peters et al.
(2016). In each environment e, the random variable X € =
[X§, ..., X¢] corresponds to the feature vector and Y© cor-
responds to the label. The data for each environment is
generated by i.i.d. sampling (X¢,Y¢) from the following
generative model. Assume a subset S* C {1,...,n} is
causal for the label Y. For all the environments e, X ¢ has
an arbitrary distribution and Y° = ¢g(Xg. ) +€°, where X§.
is the vector X ¢ with indices in S*, g : RISl — R is some
underlying function and ¢® ~ F*, Ele.] = 0, ¢ L X§..
Let ¢ be the squared error loss function. We fix the repre-
sentation ®*(X ) = X75. . With & as the representation,
the optimal classifier w among all the functions is g(Xg.)
(this follows from the generative model). If we assume that
g € H., then for each environment e, w{ = g is the optimal

classifier in H,,. Therefore, w$ o ®* = g is the invariant
predictor. If H,, satisfies affine closure, then any decom-
position of g is a pure NE of the EIRM game. We have
illustrated existence of NE and invariant predictor when
the data is generated as above and when the class H,, is
sufficiently expressive to capture g. Next, we discuss the
case when we do not know anything about the underlying
data generation process.

Assumption 4. e H,, is a class of linear models, where
w: Z — Rand w(z) = w'z, where z € Z. We write
H., as the set of vectors w. H,, is a closed, bounded
and convex. The interior of H., is non-empty.

o The loss function {(w'z,Y'), where Y € R is the label,
is convex and continuous in w. For e.g., if loss is
cross-entropy for binary classification or loss is mean
squared error for regression, then this assumption is
automatically satisfied.

Theorem 3. If Assumption 4 is satisfied, then a pure strat-
egy Nash equilibrium of the game TE'RM exists. If the
weights of all the individual is in the NE are in the inte-
rior of H.,, then the corresponding ensemble predictor is
an invariant predictor among all the linear models.

The family H,, of bounded linear functions does not satisfy
affine closure, which is why existence of NE does not im-
mediately imply the existence of invariant predictor (from
Theorem 1). However, if the solution is in the interior of
H., , then it is the globally optimal solution among all the
linear functions, which in fact actually satisfy affine closure.
As aresult, in this case the invariant predictor also exists.

Significance of Theorem 3 Our approach is based on find-
ing the NE. Therefore, it is important to understand when
the solutions are guaranteed to exist. In the above theorem,
we proved the result for linear models only, but there were
no assumptions made on the representation class. In the sup-
plement, we show that for a large class of models, pure NE
may not exist but mixed NE (a relaxation of pure NE) are
guaranteed to exist. Following the sufficient condition for
existence of invariant predictors, understanding what condi-
tions cause the NEs to be in the interior or on the boundary
of H,, can help further the theory of invariant prediction.

4. Conclusion

We developed a new framework based on game-theoretic
tools to learn invariant predictors. We work with data from
multiple environments. In our framework, we set up an
ensemble game; we construct an ensemble of classifiers with
each environment controlling one portion of the ensemble.
Remarkably, the set of solutions to this game is exactly
the same as the set of invariant predictors across training
environments. We hope this framework opens new ways to
address other problems pertaining to invariance in causal
inference using tools from game theory.
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