
Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling

Russell Mendonca * 1 Xinyang Geng * 1 Chelsea Finn 2 Sergey Levine 1

1. Introduction
Meta-reinforcement learning (meta-RL) algorithms enable
agents to perform new tasks by leveraging experience from
previously seen related tasks (Duan et al., 2016; Wang et al.,
2016; Finn et al., 2017), by extending the meta-learning
framework (Schmidhuber, 1987; Thrun & Pratt, 1998; Naik
& Mammone, 1992; Bengio et al., 1991). However, the
performance of these methods depends crucially on how
close the new tasks are to the meta-training task distribu-
tion. Meta-trained agents can adapt quickly to tasks that are
similar to those seen during meta-training, but lose much
of their benefit when adapting to tasks that are too far away
from the meta-training set.

Many meta-RL methods either utilize a variant of model-
agnostic meta-learning (MAML) and adapt to new tasks
with gradient descent (Finn et al., 2017; Rothfuss et al.,
2018; Zintgraf et al., 2018; Rusu et al., 2018; Liu et al.,
2019; Gupta et al., 2018; Sung et al., 2017; Houthooft et al.,
2018), or use an encoder-based formulation that adapt by en-
coding experience with recurrent models (Duan et al., 2016;
Wang et al., 2016; Fakoor et al., 2020; Stadie et al., 2018), at-
tention mechanisms (Mishra et al., 2017) or variational infer-
ence (Rakelly et al., 2019). The latter class of methods gen-
erally struggle when adapting to out-of-distribution tasks,
because the adaptation procedure is entirely learned and
carries no performance guarantees with out-of-distribution
inputs (as with any learned model). Methods that utilize
gradient-based adaptation have the potential of handling
out-of-distribution tasks more effectively, since gradient de-
scent corresponds to a well-defined and consistent learning
process that has a guarantee of improvement regardless of
the task (Finn & Levine, 2018). However, in the RL set-
ting, these methods (Finn et al., 2017; Rothfuss et al., 2018)
utilize on-policy policy gradient methods for meta-training,
which require a very large number of samples during meta-
training (Rakelly et al., 2019).
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Figure 1. Overview of our approach. The model context variable
(φ) is adapted using gradient descent, and the adapted context
variable (φT ) is fed to the policy alongside state so the policy can
be trained with standard RL (Model Identification). The adapted
model is used to relabel the data from other tasks by predicting
next state and reward, generating synthetic experience to continue
improving the policy (Experience Relabeling).

In this paper, we aim to develop a meta-RL algorithm that
can both adapt effectively to out-of-distribution tasks and
be meta-trained efficiently via off-policy value-based algo-
rithms. We propose to leverage a simple insight: dynamics
and reward models can be adapted consistently, using gradi-
ent based update rules with off-policy data, even if policies
and value functions cannot. These models can then be used
to train policies for out-of-distribution tasks without using
meta-RL at all, by generating synthetic experience for the
new tasks. Based on this observation, we propose model
identification and experience relabeling (MIER), a meta-
RL algorithm that makes use of two independent novel
concepts: model identification and experience relabeling.
Model identification refers to the process of identifying a
particular task from a distribution of tasks, which requires
determining its transition dynamics and reward function.
We use a gradient-based supervised meta-learning method
to learn a dynamics and reward model and a (latent) model
context variable such that the model quickly adapts to new
tasks after a few steps of gradient descent on the context
variable. The context variable must contain sufficient infor-
mation about the task to accurately predict dynamics and
rewards. The policy can then be conditioned on this context
(Schaul et al., 2015; Kaelbling, 1993) and therefore does not
need to be meta-trained or adapted. Hence it can be learned
with any standard RL algorithm, avoiding the complexity
of meta-reinforcement learning. We illustrate the model
identification process in the left part of Figure 1.

When adapting to out-of-distribution tasks at meta-test time,
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the adapted context variable may itself be out of distribution,
and the context-conditioned policy might perform poorly.
However, since MIER adapts the model with gradient de-
scent, we can continue to improve the model using more gra-
dient steps. To continue improving the policy, we leverage
all data collected from other tasks during meta-training, by
using the learned model to relabel the next state and reward
on every previously seen transition, obtaining synthetic data
to continue training the policy. We call this process, shown
in the right part of Figure 1, experience relabeling. This
enables MIER to adapt to tasks outside of the meta-training
distribution, outperforming prior meta-reinforcement learn-
ing methods in this setting.

2. Meta Training with Model Identification
We further discuss how we can reformulate the meta-RL
problem into a model identification problem, where we train
a fast-adapting model to rapidly identify the transition dy-
namics and reward function for a new task. The supervised
meta-learning setting consists of a distribution of tasks ρ(T )
where each task T is a pair of input and output random
variables (XT , YT ). Given a small dataset D(T )

adapt sampled
from a specific task T , the objective is to build a model
that performs well on the evaluation data D(T )

eval sampled
from the same task. Model agnostic meta-learning (Finn
et al., 2017) is an approach which solves the supervised
meta-learning problem by optimizing the loss of the model
after few steps of gradient descent on data from the new
task.

Unlike the standard supervised MAML formulation, we
condition our model on a latent context vector, and we only
change the context vector when adapting to new tasks. Since
all task-specific information is thus encapsulated in the con-
text vector, conditioning the policy on this context should
provide it with sufficient information to solve the task. This
architecture is illustrated in the left part of Figure 1. We
denote the model as p̂(s′, r|s,a; θ, φ), where θ is the neural
network parameters and φ is the latent context vector that
is passed in as input to the network. One step of gradient
adaptation, which we call AMAML

(
θ, φ,D(T )

adapt

)
, can be

written as follows:

φT = φ− α∇φE(s,a,s′,r)∼D(T )

adapt

[− log p̂ (s′, r|s,a; θ, φ)]

We use the log likelihood as our objective for the probabilis-
tic model. We then evaluate the model using the adapted
context vector φT , and minimize its loss on the evaluation
dataset to learn the model. Specifically, we minimize the
model meta-loss function Jp̂(θ, φ,D(T )

adapt,D
(T )
eval) to obtain

the optimal parameter θ and context vector initialization φ:

argminθ,φ Jp̂

(
θ, φ,D(T )

adapt,D
(T )
eval

)

= argminθ,φE(s,a,s′,r)∼D(T )

eval

[− log p̂ (s′, r|s,a; θ, φT )]

Given the latent context variable from the adapted model
φT , the meta-RL problem can be effectively reduced to a
standard RL problem, as the task specific information has
been encoded in the context variable. We can therefore
apply any standard model-free RL algorithm to obtain a
policy, as long as we condition the policy on the latent con-
text variable (Schaul et al., 2015; Kaelbling, 1993). In our
implementation, we utilize the soft actor-critic (SAC) algo-
rithm (Haarnoja et al., 2018), though any efficient model-
free RL method could be used.

Algorithm 1 Model Identification Meta-Training
Input: task distribution ρ(T ), training steps N , learning rate α
Output: policy parameter ψ, model parameter θ, model context φ

Randomly initialize ψ, θ, φ
Initialize multitask replay bufferR(T )← ∅
while θ, φ, ψ not converged do

Sample task T ∼ ρ(T )
Collect D(T )

adapt using πψ and φ

Compute φT = AMAML(θ, φ,D
(T )
adapt)

Collect D(T )
eval using π and φT

R(T )←R(T ) ∪ D(T )
adapt ∪ D

(T )
eval

for i = 1 to N do
Sample task T ∼ R
Sample D(T )

adapt,D
(T )
eval ∼ R(T )

Update θ ← θ − α∇θJp̂(θ, φ,D(T )
adapt,D

(T )
eval)

Update ψ ← ψ − α∇ψJπ(ψ,D(T )
eval, φT )

end
end

3. Improving Out-of-Distribution
Performance by Experience Relabeling

At meta-test time, when our method must adapt to a new
unseen task T , it will first sample a small batch of data and
obtain the latent context φT by running the gradient descent
adaptation process on the context variable, using the model
identification process introduced in the previous section.
While our model identification method is already a com-
plete meta-RL algorithm, it has no guarantees of consistency.
That is, it might not be able to adapt to out-of-distribution
tasks, even with large amounts of data: although the gradient
descent adaptation process for the model is consistent and
will continue to improve, the context variable φT produced
by this adaptation may still be out-of-distribution for the pol-
icy when adapting to an out-of-distribution task. However,
with an improved model, we can continue to train the policy
with standard off-policy RL, by generating synthetic data
using the model. In practice we adapt the model for as many
gradient steps as necessary, and then use this model to gen-
erate synthetic transitions using states from all previously
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seen meta-training tasks, with new successor states and re-
wards. We call this process experience relabeling. Since the
model is adapted via gradient descent, it is guaranteed to
eventually converge to a local optimum for any new task,
even a task that is outside the meta-training distribution. We
illustrate the experience relabeling process in the right part
of Figure 1, and provide pseudo-code in Algorithm 2.

When using data generated from a learned model to train
a policy, the model’s predicted trajectory often diverges
from the real dynamics after a large number of time steps,
due to accumulated error (Janner et al., 2019). We can
mitigate this issue in the meta-RL case by leveraging all
of the data from other tasks that was available during
meta-training. Although the new task is previously un-
seen, the other training tasks share the same state space
and action space, and so we can leverage the large set
of diverse transitions collected from these tasks. Using
the adapted model and policy, we can relabel these transi-
tions, denoted (s,a, s′, r), by sampling new actions with
our adapted policy, and by sampling next states and rewards
from the adapted model. The relabeling process can be
written as: Relabel(D, θ, φT ) = {(s,a, s′, r)|s ∈ D;a ∼
π(a|s, φT ), (s′, r) ∼ p̂(s′, r|s,a; θ, φT )}.

Algorithm 2 Experience Relabeling Adaptation

Input: test task T̂ , multitask replay bufferR(T ), Adaptation
steps for context Nfast, Training steps for policy Np, Training
steps for model Nm
Output: policy parameter ψ

Collect D(T̂ )
adapt from T̂ using πψ and φ

for i = 1 to Nfast do
Update φT using AMAML

end
while ψ not converged do

for i = 1 to Np do
Sample T ∼ R and D(T ) ∼ R(T )
D̂(T̂ ) ← Relabel(D(T ), θ, φT̂ )

Train policy ψ ← ψ − α∇ψJπ(ψ, D̂(T̂ ), φT )
end

end

4. Experimental Evaluation
We aim to answer the following questions in our experi-
ments: (1) Can MIER meta-train efficiently on standard
meta-RL benchmarks, with meta-training sample efficiency
that is competitive with state-of-the-art methods? (2) How
does MIER compare to prior meta-learning approaches for
extrapolation to meta-test tasks with out-of-distribution (a)
reward functions and (b) dynamics? (3) How important
is experience relabeling in leveraging the model to train
effective policies for out-of-distribution tasks?

4.1. Meta-Training on Meta-RL Benchmarks

We first evaluate MIER on standard meta-RL benchmarks,
which were used in prior work (Finn et al., 2017; Rakelly
et al., 2019; Fakoor et al., 2020). Results are shown in
Figure 2. We compare to PEARL (Rakelly et al., 2019),
which uses an off-policy encoder-based method, but with-
out consistent adaptation, meta Q-learning (MQL) (Fakoor
et al., 2020), which also uses an encoder, MAML (Finn
et al., 2017) and PRoMP (Rothfuss et al., 2018), which
use MAML-based adaptation with on-policy policy gradi-
ents, and RL2 (Duan et al., 2016), which uses an on-policy
algorithm with an encoder. We plot the meta-test perfor-
mance after adaptation (on in-distribution tasks) against
the number of meta-training samples, averaged across 3
random seeds. On these standard tasks, we run a variant
of our full method which we call MIER-wR (MIER with-
out experience relabeling), which achieves performance
that is comparable to or better than the best prior methods,
indicating that our model identification method provides
a viable meta-learning strategy that compares favorably to
state-of-the-art methods.

4.2. Adaptation to Out-of-Distribution Tasks

Next, we compare the performance of our full method
(MIER), and MIER without experience relabeling (MIER-
wR), to prior meta-learning methods for adaptation to out-
of-distribution tasks, both on tasks with varying reward
functions and tasks with varying dynamics. All algorithms
are meta-trained with the same number of samples (2.5M
for Ant Negated Joints, and 1.5M for all other domains)
before evaluation.

Extrapolation over reward functions: To evaluate ex-
trapolation to out-of-distribution rewards, we first test on
the half cheetah velocity extrapolation environments intro-
duced by Fakoor et al. (2020).1 Half-Cheetah-Vel-Medium
has training tasks where the cheetah is required to run at
target speeds ranging from 0 to 2.5 m/s, while Half-Cheetah-
Hard has training tasks where the target speeds are sam-
pled from 0 to 1.5 m/s, as depicted in Figure 4(a). In both
settings, the test set has target speeds sampled from 2.5
to 3 m/s. In Figure 3, we see that our method matches
MQL on the easier Half-Cheetah-Vel-Medium environment,
and outperforms all prior methods including MQL on the
Half-Cheetah-Vel-Hard setting, where extrapolation is more
difficult. Furthermore we see that experience relabeling
improves performance for our method for both settings.

We also evaluate reward function extrapolation for an Ant
that needs to move in different directions, with the training

1Since we do not have access to the code used by Fakoor et al.
(2020), quantitative results for the easier cheetah tasks are taken
from their paper, but we cannot evaluate MQL on other more
challenging tasks.
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Figure 2. Performance on standard meta-RL benchmarks. Return is evaluated over the course of the meta-training process on meta-test
tasks that are in-distribution.

Figure 3. Performance on out-of-distribution tasks. All algorithms are meta-trained with the same amount of data, and then evaluated on
out-of-distribution tasks. Cheetah-Velocity and Ant-Direction environments have varying reward functions, while Cheetah-Negated-Joints
and Ant-Negated-Joints have different dynamics.

(a) (b) (c) (d)

Figure 4. Illustration of out-of-distribution adaptation tasks: (a)
Cheetah-Velocity Medium (target velocity training set in blue, test
set in red) and Cheetah-Velocity Hard (target velocity training set
in green, test set in red), (b) Ant Direction (target direction training
tasks in green, test tasks in red), (c) Cheetah Negated Joints and
(d) Ant Negated Joints.

set comprising directions sampled from 3 quarters of a cir-
cle, and the test set containing tasks from the last quadrant,
as shown in Figure 4(b). We see in Figure 3 that our method
outperforms prior algorithms by a large margin in this set-
ting. We provide a more fine-grained analysis of adaptation
performance on different tasks in the test set in Figure 5.
We see that while the performance of all methods degrades
as validation tasks get farther away from the training dis-
tribution, MIER and MIER-wR perform consistently better
than MAML and PEARL.

Extrapolation over dynamics: To study adaptation to
out-of-distribution dynamics, we constructed variants of
the HalfCheetah and Ant environments where we randomly
negate the control of randomly selected groups of joints as
shown in Figures 4(c) and 4(d). During meta-training, we
never negate the last joint, such that we can construct out-of-
distribution tasks by negating this last joint, together with a
randomly chosen subset of the others. For the HalfCheetah,
we negate 3 joints at a time from among the first 5 during
meta-training, and always negate the 6th joint (together with
a random subset of 2 of the other 5) for testing, such that

Figure 5. Performance evaluated on validation tasks of varying
difficulty. For Cheetah Velocity, the training distribution consists
of target speeds from 0 to 1.5 m/s, and so tasks become harder
left to right along the x axis. Ant Direction consists of training
tasks ranging from 0 to 1.5 π radians, so the hardest tasks are in
the middle.

there are 10 meta-training tasks and 10 out-of-distribution
evaluation tasks. For the Ant, we negate 4 joints from
among the first 7 during meta-training, and always negate
the 8th (together with a random subset of 3 of the other 7)
for evaluation, resulting in 35 meta-training tasks and 35
evaluation tasks, out of which we randomly select 15.

In addition to PEARL and MAML, we compare against
GrBAL (Nagabandi et al., 2018), a model based meta-RL
method. We note that we could not evaluate GrBAL on
the reward extrapolation tasks, since it requires the analytic
reward function to be known during planning, but we can
compare to this method under varying dynamics. From
Figure 3, we see that performance on Cheetah-Negated-
Joints with just context adaptation (MIER-wR) is substan-
tially better than PEARL and MAML and GrBAL, and there
is further improvement by using the model for relabeling
(MIER). On the more challenging Ant-Negated-Joints envi-
ronment, MIER-wR shows similar performance to PEARL,
and leveraging the model for relabeling again leads to better
performance for MIER.
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