
Group Equivariant Deep Reinforcement Learning

Arnab Kumar Mondal 1 2 Pratheeksha Nair 1 3 Kaleem Siddiqi 1 2

Abstract
In Reinforcement Learning (RL), Convolutional
Neural Networks(CNNs) have been successfully
applied as function approximators in Deep Q-
Learning algorithms, which seek to learn action-
value functions and policies in various environ-
ments. However, to date, there has been little
work on the learning of symmetry-transformation
equivariant representations of the input environ-
ment state. In this paper, we propose the use
of Equivariant CNNs to train RL agents and
study their inductive bias for transformation equiv-
ariant Q-value approximation. We demonstrate
that equivariant architectures can dramatically en-
hance the performance and sample efficiency of
RL agents in a highly symmetric environment
while requiring fewer parameters. Additionally,
we show that they are robust to changes in the
environment caused by affine transformations.

1. Introduction
Reinforcement Learning has always faced the challenge of
handling high dimensional sensory input, such as that given
by vision or speech. To this end, it was demonstrated that
a convolutional neural network could directly learn control
policies from raw video data, with success in various Atari
game environments (Mnih et al., 2013). More recently, there
has been work to improve both the feature extraction from
raw images(Grattarola, 2017) as well as the underlying Deep
Q-Learning algorithm (Schaul et al., 2015; Horgan et al.,
2018; Van Hasselt et al., 2016; Wang et al., 2015). Following
this, a variety of models focusing on short-term memory
(Kapturowski et al., 2018), episodic memory (Badia et al.,
2020b) and meta controlling (Badia et al., 2020a) have been
introduced. Despite these advances, the generalization of
trained agents to new environments and the improvement of
sample efficiency has not been widely explored. One way

1School of Computer Science, Mcgill University, Montreal,
Canada 2Centre for Intelligent Machines, Mcgill University, Mon-
treal, Canada 3McGill Centre for Bioinformatics, McGill Uni-
versity, Montreal, Quebec, Canada. Correspondence to: Arnab
Mondal <arnabm@cim.mcgill.ca>.

Presented at the ICML 2020 Workshop on Inductive Biases, Invari-
ances and Generalization in RL. Copyright 2020 by the author(s).

to tackle this problem is to apply standard regularization
techniques such as L2 regularization, dropout (Srivastava
et al., 2014), data augmentation and batch normalization
(Ioffe & Szegedy, 2015), as proposed in (Farebrother et al.,
2018; Cobbe et al., 2018). Approaches rooted in Meta-
RL have also been proposed to address the generalization
problem (Wang et al., 2016; Dasgupta et al., 2019; Kirsch
et al., 2019).

In this work, we exploit the intrinsic properties of an envi-
ronment, such as its symmetry, to improve the performance
of Deep RL algorithms. In particular, we consider the ef-
ficacy of using an E(2)-Equivariant CNN (Weiler & Cesa,
2019) architecture as a function approximator for training
RL agents using an Equivariant Q-Learning algorithm. We
show that in a game environment, with a high degree of
symmetry, such an approach provides a significant perfor-
mance gain and improves sample efficiency as it learns from
fewer experience samples. We further show that the inherent
inductive bias for the equivariance of symmetry transforma-
tion of our proposed approach, enables the effective transfer
of knowledge across previously unseen transformations of
the environment. Our proposed method is complementary
to the other generalization ideas in RL mentioned earlier,
and hence can be used in conjunction with them. Using the
proposed method adds negligible computational overhead,
improves generalization and facilitates a higher degree of
parameter sharing. The ideas explored in this paper could
be extended to more challenging RL tasks, such as path
planning in dynamic environments, where the dynamics is
given by symmetry transformation, using aerial views. In
such tasks, the policy may be designed to be equivariant to
symmetric transformations of the viewpoint.

The rest of the paper is organized as follows: Section 2
gives a brief overview of relevant background. In Section
3, we review the theory of E(2)-equivariant convolution and
introduce our Equivariant DQN model. Finally, we present
empirical results on two environments, Snake and Pacman,
in Section 4, demonstrating the promise of equivariant Deep
RL.

2. Background
Group equivariant CNNs (G-CNN) (Cohen & Welling,
2016) exploit the group of symmetries of input images to
reduce sample complexity, learn faster and improve the

capacity of CNNs without increasing the number of parame-
ters. This network architecture uses a new convolution layer
whose output feature map changes equivariantly with the
group action on the input feature map and promotes higher
degrees of weight sharing. The theory of steerable CNNs
(Cohen & Welling, 2017; Weiler & Cesa, 2019; Weiler et al.,
2018) generalizes this idea to continuous groups and ho-
mogeneous spaces. In this work, we focus on using an
E(2)-Equivariant Steerable CNN(Weiler & Cesa, 2019) ar-
chitecture for deep RL.

Given an input signal, CNNs extract a hierarchy of feature
maps. The weight-sharing of the convolution layers makes
them inherently translation-equivariant so that a translated
input signal results in a corresponding translation of the
feature maps(Cohen & Welling, 2016). An E(2)-Equivariant
Steerable CNN carries out translation, rotation and reflec-
tion equivariant convolution on the image plane. The feature
spaces of such Equivariant CNNs are defined as spaces of
feature fields and are characterized by a group representa-
tion that determines their transformation behaviour under
transformations of the input, as discussed in Section 3.1.

The Deep Q-learning Network (DQN) (Mnih et al., 2013)
has been widely used in RL since its inception. The DQN
utilizes “experience replay” (Lin, 1993) where the agent’s
experiences at each time-step are stored in a memory buffer,
and the Q-learning updates are done on samples drawn
from this buffer, which breaks the correlation between them.
A variant of this strategy is the “prioritized replay buffer”
(Schaul et al., 2015), where the experiences are sampled
according to their importance. A second variant, the Double
DQN or DDQN (Van Hasselt et al., 2016), addresses the
problem of maximization bias, which occurs due to the
usage of the same Q network for the off-policy bootstrapped
target. An additional improvement is the use of an advantage
function and the learning of a value function to determine
the action-values using a common convolutional feature
learning module, in a Dueling Network (Wang et al., 2015).
We experiment with the above mentioned variants.

3. Method
3.1. E(2)-equivariant convolution

In this section, we briefly describe the theory behind E(2)-
equivariant convolution. First, we define the group T (2)oG
where G ≤ O(2). T(2) is a translational group on R2 and
G is a subgroup of the orthogonal group O(2), which are
continuous rotations and reflections under which the origin
is invariant. Intuitively, we are dealing with the subgroups
of the group of isometries of a 2-D plane called E(2). In con-
trast to regular CNNs, which work with a stack of multiple
channels of features f : R2 → R, the steerable CNN de-
fines a steerable feature space of feature fields f : R2 → Rc

which associates a c dimensional feature vector f(x) ∈ Rc

to every x ∈ R2. The feature fields are linked to a trans-
formation law that defines their transformations under the
action of a group. The transformation law of a feature field is
characterized by the group representation ρ : G 7→ GL(Rc),
where GL(Rc) represents the group of all invertible c × c
matrices. This defines how each of these c channels mixes
when the vector f(x) is transformed. The operator for a
transformation tg, where t ∈ T (2) and g ∈ G, is given by:(

[IndT (2)oG
G ρ] (tg) .f

)
(x) := ρ(g).f

(
g−1 (x− t)

)
(1)

where [Ind
T (2)oG
G ρ] is called the induced representation.

Analogous to the channels of a regular CNN, we can stack
multiple feature fields fi with their corresponding repre-
sentation ρi and the stack

⊕
i fi then transforms under⊕

i ρi, which is a block diagonal matrix. Notice that due
to ρ being a block diagonal matrix each feature field trans-
forms independently. Having described the feature fields,
we will next give the equation for equivariance and the
constraint it imposes on the convolution kernel. Consider
two feature fields fin : R2 → RCin with representation
ρin, fout : R2 → RCout with representation ρout and a
convolution kernal k : R2 → Rcout×cin then the desired
equivariance is given by:

k ∗
(
[IndT (2)oG

G ρin] (tg) .fin

)
=

[IndT (2)oG
G ρout] (tg) .(k ∗ fout)

(2)

where convolution is defined as usual as:

fout(x) := (k ∗ fin)(x) =
∫
R2

k(y)fin(x+ y)dy (3)

This can only be achieved if we restrict ourselves to G-
steerable kernels which satisfy the kernel constraint:

k(gx) := ρout(g)k(x)ρin(g
−1) ∀g ∈ G&x ∈ R2 (4)

Imposing this constraint on the kernels significantly reduces
the number of parameters and promotes parameter sharing.
Also, by obtaining equivariance in each convolution layer
of the network, they can be composed to extract equivariant
features from the input 2D image signal. Further details on
the kernel basis are provided in (Weiler & Cesa, 2019).

3.2. Environment

In this work, we primarily experiment with two environ-
ments - the Snake game of the Pygame Learning Envi-
ronment (Tasfi, 2016) and the Atari Pacman environment
(Brockman et al., 2016) 1. In the Snake game2, the agent
is a snake which grows in length each time it feeds on a

1https://gym.openai.com/envs/MsPacman-v0/
2https://pygame-learning-environment.readthedocs.io/-

en/latest/user/games/snake.html

https://gym.openai.com/envs/MsPacman-v0/
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/snake.html
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/snake.html

original (e) r r2 r3

t tr tr2 tr3

Figure 1. If we denote the 90 degree clockwise rotation by r and
reflection over the vertical axis as t, then the group elements of
D4 are {e, r, r2, r3, t, tr, tr2, tr3} where e is the identity action.
These panels show the action of these group elements (transfor-
mations) on a game screen and how they affect the optimal policy
(shown by white arrows).

food particle and gets a reward of +1. The food particle
is randomly placed somewhere inside the valid area of a
screen. The snake can choose four legal actions: move up,
move down, move left, and move right. A terminal state is
reached when the snake comes in contact with its body or
the walls, and the agent then receives a score of -1. From
Figure 1, we see that under the action of group elements of
D4, the current optimal policy should change equivariantly,
which suggests the possible benefits of learning the Q values
for each action using equivariant features extracted from the
game screen.

The Pacman game consists of a maze, a player agent and
a few ghosts. Food particles are placed along the paths of
the maze while the ghosts move freely around it. The player
agent is also allowed four actions - move up, move down,
move right and move left and it gets a positive reward for
each particle it consumes without running into any of the
ghosts. The game screen has a global D1 symmetry and a
degree of local D4 symmetry.

3.3. Equivariant Deep Q-Network

Henceforth in this paper, “equivariant convolution” refers
to E(2)-equivariant steerable convolution. Suppose our pre-
processed input is of dimension m× d× d where m is the
number of channels, and d× d is the size of the image. We
convert it into a feature field represented by s =

⊕
i∈I si

where I = {1, ..,m} and si is an image of dimension d× d.
The transformation law of each channel is given by trivial
representation (ρtriv) of a chosen discrete group (G) for
each channel. We further choose a regular representation
(ρreg) for intermediate feature fields, which are permutation
matrices given a group element g ∈ G, to derive the kernel
basis of equivariant convolution. Using regular representa-

tion preserves the equivariance with point-wise nonlinear
activation functions such as ReLU. We stack equivariant
convolutions followed by ReLU to obtain an equivariant fea-
ture extractor Feqv : Rm×d×d → Rn where n denotes the
dimension of extracted equivariant features. The detailed
architecture of this feature extractor and its relationship to
the vanilla feature extractor we use in DDQN are in Ap-
pendix B. A discussion on how to choose the group and its
representation for a feature field along with group restriction
is included in Appendix A. Assuming that we do not restrict
the group G along the depth of the network, our transforma-
tion rule of the extracted feature vector with respect to the
transformation of input is given by:

Feqv

(
[IndT (2)oG

G ρtriv] (tg) s; θ
)
= ρ(g) (Feqv (s; θ))

(5)

where ρ(g) =
⊕

j∈J ρreg(g) and(
[IndT (2)oG

G ρtriv] (tg) s
)
(x) :=

⊕
i∈I

[
si
(
g−1 (x− t)

)]
Note that Equation 5 gives the desired equivariance and
J = {1, .., (n/N)}whereN is the order of the g. N divides
n and n/N is the number of feature fields at the output.
Intuitively, Equation 5 means that at every feature field the
values permute along its dimension when we transform the
input by some group element. Also note that if we restrict
the group along the depth we will have gres ∈ Gres ≤ G in
the RHS of Equation 5 instead of g. Having obtained the
feature vector which transforms equivariantly we can add a
final linear layer to obtain the Q values:

Qeqv(s, a, φ) =Wa.Feqv(s; θ) + ba (6)

where a ∈ A = {1, .., |A|}, Wa = [wa1..wan] and
φ = {θ,W1, ..,W|A|, b1, .., b|A|}(the set of all parameters).
The linear layer learns whether or not to preserve the equiv-
ariance in output depending on the environment. We use
DDQN as our baseline model throughout this work whose
final loss at iteration l is given by:

L(φl) = Es,a,r,s′

[(
yDDQN
l −Qeqv(s, a, φl)

)2]
(7)

with target:

yDDQN
l = r + γQeqv(s

′, argmax
a′

Qeqv(s
′, a′, φl), φ

−)

(8)
where φ− represents the parameters of the frozen network.
The gradients computed through both the linear and the
equivariant feature extractor networks are backpropogated
to update their parameters.

Snake

Pacman

Figure 2. Plots of evolution of average rewards with the number of
episodes. We also show the confidence intervals over 10 different
seeds. Note that the plots are smoothed with a 1D Gaussian filter
with σ=3 for better visualization.

4. Experiments
We first consider the performance of a carefully designed
equivariant DDQN, keeping in mind the symmetry of the
game (refer to Appendix B), compared to a vanilla DDQN.
For a fair comparison, we keep the settings of the environ-
ment and hyperparameters the same for all the experiments3.
We report in Figure 2 the evolution of rewards collected
over the training episodes for both the models in the Snake
and the Pacman environments. Our proposed model at-
tains a 30% improvement in average reward collected after
training for 3000 episodes in the highly symmetric Snake
environment. It also learns faster with a 90% reduction in
the number of parameters. This verifies our hypothesis that
parameters required to learn policies of the identity transfor-
mation would be sufficient to generalize to optimal policies
in other transformations for the Snake environment. In the
case of Pacman, we notice our model performs slightly
better in the initial episodes, with a 34% reduction in the
number of parameters. But once both the models have seen

3Link to the code: https://github.com/arnab39/EquivariantDQN

enough samples, the margin of difference vanishes. In Ap-
pendix C, we show that the proposed method gives similar
results with other subsequent improvements, such as using
DDQN with priority replay and the Dueling architecture.

We further investigate the usefulness of the inherent induc-
tive bias in the model in transfer learning with respect to
the affine transformation of the environment screen. For
this part, we remove the group restriction from Equivariant
DDQN of the Pacman game and make the feature extractor
D4 equivariant. First we train both the Vanilla and Equiv-
ariant model. We then change the environment by rotating
the input screen by 90 degrees clockwise (r). Leaving the
rest of the network frozen, we retrain the final linear layer
for this new environment. We show in Table 1 that while a
regular CNN based feature extractor fails, the Equivariant
feature extractor can still find a decent policy after learn-
ing the linear layers for certain epochs. The results of a
simple path planning problem like Snake, indicate that our
model can, in principle, be extended to more complex con-
tinuous path planning problems such as in UAVs (Zhang
et al., 2015; Challita et al., 2018). Such scenarios would
benefit both from faster learning due to increased sample
efficiency and viewpoint transformation equivariant features
for optimal policy learning, which can generalize to new
transformations of the environment.

Transformation Vanilla DDQN Equivariant DDQN
e 129 ± 2.3 125 ± 4.5
r 48.9 ± 2 99 ± 4.7
r2 53 ± 3.5 104 ± 3.4
r3 51 ± 1.9 98 ± 3.9

Table 1. Average reward over 200 episodes of Pacman for 5 seeds
reported with a confidence level of 95% for different environment
transformations. e is the original screen.

5. Conclusions and future work
We have introduced an Equivariant Deep-Q learning algo-
rithm, and have demonstrated that it provides a considerable
boost to performance with parameter and sample efficiency
when carefully designed for highly symmetric environments.
We have also shown that this approach generalizes policies
well to new unseen environments obtained by an affine trans-
formation of the original environment. Although invariant
models in supervised learning were shown to make the mod-
els robust, to the best of our knowledge, this is the first
time equivariant learning has been proposed in a Deep RL
framework. In follow-up work, we plan to implement con-
tinuous rotation and reflection group equivariance using an
irreducible representation of the O2 group, for more chal-
lenging path planning environments, with an extension to a
continuous action space.

https://github.com/arnab39/EquivariantDQN

6. Acknowledgement
We would like to thank Gabriele Cesa for his valuable com-
ments on the E(2)-equivariant convolution.

References
Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P.,

Vitvitskyi, A., Guo, D., and Blundell, C. Agent57: Out-
performing the atari human benchmark. arXiv preprint
arXiv:2003.13350, 2020a.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot,
B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel,
A., Bolt, A., et al. Never give up: Learning directed
exploration strategies. arXiv preprint arXiv:2002.06038,
2020b.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Challita, U., Saad, W., and Bettstetter, C. Deep reinforce-
ment learning for interference-aware path planning of
cellular-connected uavs. In 2018 IEEE International
Conference on Communications (ICC), pp. 1–7. IEEE,
2018.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman,
J. Quantifying generalization in reinforcement learning.
arXiv preprint arXiv:1812.02341, 2018.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999, 2016.

Cohen, T. S. and Welling, M. Steerable cnns. International
Conference on Learning Representations (ICLR), 2017.

Dasgupta, I., Wang, J., Chiappa, S., Mitrovic, J., Ortega,
P., Raposo, D., Hughes, E., Battaglia, P., Botvinick,
M., and Kurth-Nelson, Z. Causal reasoning from meta-
reinforcement learning. arXiv preprint arXiv:1901.08162,
2019.

Farebrother, J., Machado, M. C., and Bowling, M. Gen-
eralization and regularization in dqn. arXiv preprint
arXiv:1810.00123, 2018.

Grattarola, D. Deep feature extraction for sample-efficient
reinforcement learning. 2017.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., Van Hasselt, H., and Silver, D. Distributed priori-
tized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. 2018.

Kirsch, L., van Steenkiste, S., and Schmidhuber, J. Improv-
ing generalization in meta reinforcement learning using
learned objectives. arXiv preprint arXiv:1910.04098,
2019.

Lin, L.-J. Reinforcement learning for robots using neu-
ral networks. Technical report, Carnegie-Mellon Univ
Pittsburgh PA School of Computer Science, 1993.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Tasfi, N. Pygame learning environment. GitHub repository,
2016.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Thirtieth AAAI
conference on artificial intelligence, 2016.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanc-
tot, M., and De Freitas, N. Dueling network architec-
tures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

Weiler, M. and Cesa, G. General e (2)-equivariant steerable
cnns. In Advances in Neural Information Processing
Systems, pp. 14334–14345, 2019.

Weiler, M., Hamprecht, F. A., and Storath, M. Learning
steerable filters for rotation equivariant cnns. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 849–858, 2018.

Zhang, B., Mao, Z., Liu, W., and Liu, J. Geometric rein-
forcement learning for path planning of uavs. Journal of
Intelligent & Robotic Systems, 77(2):391–409, 2015.

E-Conv

Relu

E-Conv

Relu

E-Conv

Relu

Conv

Relu

Conv

Relu

Conv

Relu

E-Conv
(di x di)

Relu

Linear

Relu

n

Linear

Equivalent
operation

Vanilla DQN

Equivariant DQN

Feqv

Linear

m d

d

m d

d

mi
di

di

di
dimi

n̂
^

Figure 3 Juxtaposed Network architecture

A. Group representation and restriction in
feature fields

We now discuss how one would choose a group (g) and
its representation (ρ) to define a feature field. The group’s
choice mainly depends on the problem we are tackling and
to which kinds of transformation we wish the network to
output equivariantly. We have several options for E(2)-
equivariant convolution, starting from discrete rotations
and reflections (DN) to continuous rotation and reflection
(O(2)). Once a group is chosen, we need to choose its rep-
resentation. The most common ones are trivial, irreducible,
regular and quotient representations. The representation cho-
sen determines the dimension c of a feature vector. While a
trivial representation implies scalar features with dimension
1 the regular representation uses an N -dimensional feature
field, where N denotes the order of the group we are using.
Even though a regular representation was shown to perform
the best(Weiler & Cesa, 2019), it is computationally infea-
sible to use it when using higher-order groups. In such a
case, we use an irreducible representation, which takes the
smallest dimension while leaving the representation of all
the group elements unique.

Let us assume that we are working with a genericDN group
with its regular representation. The next thing we need to
choose is the number of feature fields for each intermediate
layer. Together the chosen representation and number of
feature fields contribute to the dimension of the stack

⊕
i fi

of intermediate feature fields, which further determines the
depth of the convolution kernel we are using between two
feature fields. Although increasing the number of feature
fields increases the network’s capacity, this comes at the
cost of increased computation during a single forward pass.

In an environment where we have a global DN symmetry,
where we want DN equivariant features and N > 1, we can
directly choose the group and keep it throughout. But in

most environments where there is usually a global D1 sym-
metry and occasionally local DN symmetry, using the same
representation throughout would be futile as this is accom-
panied by order of N increase in feature field dimension.
To alleviate this problem, we start with a higher-order group
DN where N > 1 and as we go deeper into our Q network,
we restrict it to its subgroups(≤ DN). This makes the net-
work more computationally efficient while still extracting
an equivariant feature vector.

B. Network Architecture
The baseline Vanilla DDQN used in this work is similar to
the one used in (Mnih et al., 2013), which has an output
dimension equal to the number of actions. As shown in Fig-
ure 3, our proposed Equivariant DDQN architecture mainly
replaces the Vanilla convolutions(Conv) and the second last
linear layer with equivariant convolutions(E − Conv). We
call this an equivariant feature extractor. We want to empha-
size on the last E-Conv layer and point-out that its operation
is similar to the second last linear layer in a Vanilla DDQN.
As we use the filter size of the dimension of feature size be-
fore that layer, all the information is captured as a weighted
sum into a 1-D vector. Although this is the same as the
flattening of the feature and then applying a linear layer,
using E − Conv renders the output vector equivariant.

The final linear layer is the same for both and maps them to
Q-values for each action. Notice, as mentioned in Appendix
A, the group representation and the number of feature
field will determine the sizes of intermediate features.
We aim to make both networks similar with respect to
computation time while not comprising the capacity of the
Equivariant model. Below we provide the architecture of the
Equivariant and Vanilla DDQN for both Snake and Pacman.
We denote a basic convolution by: Conv(filtersize ×
filtersize, inchannels, outchannels, stride, padding)
and equivariant one by: E − Conv(filtersize ×

filtersize, infields, outfields, stride, padding)[Group]
The group restriction operation is denoted by:
GrpRes[Group → Subgroup]. In the Vanilla and
Equivariant DDQN, we denote the size of the output of
the third convolution by m̂i × di × di and mi × di × di
respectively. Using this, we give the exact architecture of
both the networks below.

B.1. Snake

B.1.1. VANILLA DDQN

Conv(7× 7,m, 32, 2, 2)−ReLU
Conv(5× 5, 32, 64, 2, 1)−ReLU
Conv(5× 5, 64, 64, 1, 1)−ReLU
Linear(m̂i × di × di, 256)−ReLU
Linear(256, |A|)

B.1.2. EQUIVARIANT DDQN

E − Conv(7× 7,m, 8, 2, 2)[D4]−ReLU
E − Conv(5× 5, 8, 12, 2, 1)[D4]−ReLU
E − Conv(5× 5, 12, 12, 1, 1)[D4]−ReLU
E − Conv(di × di, 12, 32, 1, 0)[D4]−ReLU
Linear(256, |A|)

B.2. Pacman

B.2.1. VANILLA DDQN

Conv(7× 7,m, 32, 4, 2)−ReLU
Conv(5× 5, 32, 64, 2, 2)−ReLU
Conv(5× 5, 64, 64, 2, 1)−ReLU
Linear(m̂i × di × di, 512)−ReLU
Linear(512, |A|)

B.2.2. EQUIVARIANT DDQN

E − Conv(7× 7,m, 8, 2, 2)[D4]−ReLU
E − Conv(5× 5, 8, 16, 2, 1)[D4]−ReLU
GrpRes[D4 → D1]
E − Conv(5× 5, 16, 64, 1, 1)[D1]−ReLU
E − Conv(di × di, 64, 384, 1, 0)[D1]−ReLU
Linear(768, |A|)

Network Type Vanilla DQN
Number of
Parameters

Vanilla DDQN Snake 583.46k
Equivariant DDQN Snake 57.7k

Vanilla DDQN Pacman 984.36k
Equivariant DDQN Pacman 649.93k

Table 2. This table gives the number of parameters of both the
Networks.

Although there is a difference in the number of channels and
feature fields, the overall runtime of the DDQN algorithms
with both the networks are similar. The forward pass of the

Equivariant network is more computationally expensive as
the total dimension of the stack of feature fields in some
layers is more than the number of channels in the Vanilla
network. But this is partially compensated for during the
backpropagation where we are updating fewer parameters
in an Equivariant network. Note that, in general, adding fea-
ture fields increases the capacity at the cost of computation,
but we keep the total cost with respect to the Vanilla model
in mind while choosing them. Also, as the Pacman envi-
ronment is globally symmetric to the D1 group, we restrict
the group once D4 symmetric lower level features are ex-
tracted, which also reduces the dimension of representation
and hence the computation cost significantly. It is interest-
ing to note that higher-order symmetry in the environment
leads to fewer parameters than the Vanilla DQN.

C. Additional Results
In this section, we provide some additional results of our
proposed method applied to DDQN with priority replay
and Dueling DDQN in the Snake Environment. We show
that our proposed models outperform the Vanilla models in
both the cases, which demonstrates that our approach scales
to handle different algorithms. Note that we used a lower
learning rate for Dueling DQN to stabilize training.

DDQN with priority replay in Snake

Dueling DQN in Snake

Figure 4. Plots of evolution of average rewards with the number
of episodes over 10 different seeds and are smoothed with a 1D
Gaussian filter with σ=3 for better visualization.

