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Abstract
Temporal abstraction refers to an agent’s ability to
learn and use high-level behaviors, called options.
The option-critic architecture provides a gradient-
based end-to-end learning method to construct op-
tions. We propose an attention-based extension to
this framework, which enables the agent to learn
to focus different options on different aspects of
the observation space. We show that this leads
to behaviorally diverse options which are also
capable of state abstraction, and prevents the de-
generacy problems of option domination and fre-
quent option switching that occur in option-critic.
We also demonstrate the more interpretable and
reusable nature of the learned options in compar-
ison with option-critic through different transfer
settings. Experimental results in a relatively sim-
ple four-rooms environment and the more com-
plex ALE (Arcade Learning Environment) show-
case the efficacy of our approach.

1. Introduction
Humans are effortlessly adept at many forms of abstraction.
We plan and perform high-level actions that typically last
for an extended period of time. This is known as tempo-
ral abstraction. When observing our surroundings before
making a decision, we rely and focus on only the important
aspects of our sensory input, and ignore the unnecessary
signals. This is called state abstraction.

Within the options framework (Sutton et al., 1999; Precup,
2000), the option-critic architecture (Bacon et al., 2017)
enables end-to-end learning of intra-option policies, the ter-
mination functions and the policy over options, to maximize
the expected return. However, if this is the sole objective
for option discovery, the benefit over primitive action poli-
cies is questionable. Indeed, the option-critic architecture
eventually results in option degeneracy i.e. either one op-
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tion dominates and is the only one that is used, or there is
frequent termination of and switching between options. The
deliberation cost model (Harb et al., 2018) combats this by
assigning a penalty to option termination. This approach
leads to extended options, but is susceptive to a hard-to-
interpret cost parameter.

We adopt the view that options should be diverse in their
behavior by explicitly learning to attend to different parts
of the observation. In doing so, we solve the degeneracy
problem by ensuring that options are only used when their
respective attentions are activated. This lends credibility to
the notion of options specializing to achieve specific behav-
iors. For example, in the four-rooms environment (Sutton
et al., 1999), it makes little sense to use the complete ob-
servation when deciding how to move out of a particular
room. Current option discovery methods in the function
approximation setting do just this. Our approach also, in
effect, relaxes the strong and popular assumption that all op-
tions are available everywhere, and acts as a proxy towards
learning the initiation sets (Sutton et al., 1999).

2. Background
A discrete-time finite discounted MDP (Markov Decision
Process)M (Puterman, 1995; Sutton and Barto, 1998) is
characterized by the tuple {S,A, R, P, γ}. At each timestep
t, the agent observes state st ∈ S and takes an action
at ∈ A according to policy π, thereby receiving reward
rt+1 = R(st, at) and transitioning to state st+1 ∈ S with
probability P (st+1|st, at). For policy π, the discounted
state value function is: V π(s) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s]
and the discounted action value function is: Qπ(s, a) =
Eπ[
∑∞
t=0 γ

trt+1|s0 = s, a0 = a].

2.1. The Options Framework

A Markovian option ω ∈ Ω (Sutton et al., 1999) consists
of an initiation set Iω ⊆ S, an intra-option policy πω :
S×A → [0, 1], and a termination condition βω : S → [0, 1].
Ω(s) denotes the set of available options for state s and an
option ω is available in state s if s ∈ Iω. Ω is the union
of all Ω(s),∀s ∈ S. In call-and-return option execution
(Bacon et al., 2017), when the agent is in state st, it chooses
an option ω ∈ Ω(st) according to a policy over options πΩ.
The intra-option policy πω is then followed until termination
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according to βω after which a new option that is available at
the new state is chosen by πΩ, and the process repeats. Like
many existing option discovery methods, we too assume
universal option availability, i.e., ∀s ∈ S,∀ω ∈ Ω : s ∈ Iω ,
but later show how our approach relaxes this assumption.

For parameterized intra-option policies πω,θ and option ter-
minations βω,ν , the option-value function is:

QΩ(s, ω) =
∑
a

πω,θ(a|s)QU (s, ω, a) (1)

where QU : S × Ω × A → R is the value of executing
action a in the context of state-option pair (s, ω):

QU (s, ω, a) = r(s, a) + γ
∑
s′

[
P (s′|s, a)

×((1− βω,ν(s′))QΩ(s′, ω) + βω,ν(s′)VΩ(s′))
] (2)

Here, VΩ(s) =
∑
ω πΩ(ω|s)QΩ(s, ω) is the option-level

state value function. πω,θ and βω,ν are learned using the
intra-option policy gradient theorem and termination gradi-
ent theorem respectively (Bacon et al., 2017).

2.2. Attention

The attention mechanism was first proposed in language
translation tasks (Bahdanau et al., 2015) but has since been
applied in vision (Sorokin et al., 2015) and reinforcement
learning (Mnih et al., 2014) as well. It enables the localiza-
tion of important information before making a prediction.
In our approach, soft attention is applied as a learnable mask
over the state observations.

3. Attention Option-Critic
We introduce the Attention Option-Critic (AOC) architec-
ture to enable options to learn to be attentive to specific
features in the observation space in order to diversify their
behavior and prevent degeneracy. An attention mechanism
hω,φ, parameterized by φ, is applied to the observation s
for each option ω as: oω = hω,φ(s) � s where � denotes
element-wise multiplication. hω,φ consists of values in [0, 1]
and is the same size as the original observation s. The result
oω is used to determine the option’s value, policy and termi-
nation. This is done for each option separately, and ensures
only the required features from the observation determine
the option’s behavior. We refer to o as the list of all attention-
modified observations for each option o = {oω : ω ∈ Ω}.
The learning of the option terminations and intra-option poli-
cies is similar to the option-critic architecture. The complete
algorithm is shown in Algorithm 1.

The attention for each option is learned to maximize the ex-
pected cumulative return of the agent while simultaneously
maximizing a distance measure between the attentions of

the options, so that they attend to different features. Regular-
ization is added to facilitate the emergence of desired option
characteristics. The attention parameters φ are updated with
gradient ascent as φ = φ+ αφ∇φ

[
QΩ(oω, ω) + L

]
, where

L denotes the sum of the distance measure and the regular-
ization, weighted by their respective importance.

The attention mechanism brings an aspect of explainability
to the agent. It also provides a highly interpretable knob to
tune options since the characteristics of the options can be
controlled through the attentions. For example, constraining
attentions to be distinct enables the diversity of options
to be set explicitly as a learning objective. Alternatively,
penalizing differences in option attention values for states
along a trajectory results in temporally extended options.

The resulting attention for each option also serves as an
indication of the regions of state space where that option
is active and can be initialized. Thus, along with the intra-
option policies and option terminations, AOC essentially
learns the initiation sets of the options in that an option is typ-
ically only initiated and executed in a particular state when
the corresponding attention of that option in that state is
high. This prevents frequent option termination and switch-
ing, and also prevents option domination by ensuring that a
single option cannot always be followed.

4. Experimental Results
4.1. Learning in the four-rooms environment

In the four-rooms navigation task (Sutton et al., 1999), the
agent must reach a specified goal. The observation space
consists of one-hot-encoded vectors for every state in the
grid. The available actions are up, down, left and right. En-
vironment details are provided in section C.2. The reward
is +20 upon reaching the goal, and -1 otherwise. We use 4
options for learning, with γ = 0.99. The attention hω,φ for
each option ω is initialized randomly as a vector of the same
length as the input observation s. Thus, in this situation, the
option attentions are independent of the state observation.
We employ a 2-layer shared-parameter neural network to
approximate the intra-option policies, the option termina-
tion functions, and the option values. In our implementation
of AOC (for all experiments), the network learns the op-
tion values QΩ to which the ε-greedy strategy is applied to
determine the policy over options πΩ.

The option attentions, values, policies and terminations are
learned in an end-to-end manner to maximize the total ex-
pected discounted return. The cosine similarity between
the option attentions is added to the loss to ensure attention
diversity. Furthermore, a regularization loss – the sum of
absolute differences between attentions (for each option) of
adjacent states in a trajectory – penalizes irregularities in
the option attentions of states in close temporal proximity.
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(a)

(b)

(c)

Figure 1. An example of learned options in the four-rooms domain
with goal at north hallway (shown in green). (a) example of degen-
erate options learned by OC. Darker color indicates more frequent
option execution in that particular state. Option 1 dominates and
is used 88.12% while Option 0 is used 11.88%. Options 2 and
3 are unused. (b) the resulting attention learned for each option
with AOC. (c) the options learned using AOC. The options are
diverse and respect their attentions. The option usage is relatively
balanced at 19.5%, 34.3%, 8.1% and 38.1% respectively.

This results in smooth attentions and leads to temporally
extended options by minimizing switching. Thus, for the
four-rooms domain, the L term in Algorithm 1 is enforced
by adding w1L1 + w2L2 to the overall network loss func-
tion, whereL1 is the total sum of cosine similarities between
the attentions of every pair of options, L2 is the temporal
regularization loss for option attentions, and w1 and w2 are
the respective weights for these additional objectives. We
found that a value of 2.0 for both w1 and w2 resulted in
the most diverse options, judged quantitatively (see section
A.6) and qualitatively (Figure 1). Further details regarding
hyperparameters and architecture are provided in section C.

The resulting option usage and their attentions are shown in
Figure 1. The learned options are distinct and specialized,
and they perform state abstraction by focussing on a subset
of the observation. The option usage respects the corre-

sponding area of attention, which indicates that the options
are typically limited to this area and that their behavior can
be reasonably interpreted from their attentions. AOC also
learns stable options whose behaviors and usage do not vary
significantly during the course of training. This is in con-
trast to option-critic (OC), which tends to learn degenerate
options that are volatile and continuously change (see A.1).

Although AOC additionally needs to learn option attentions,
it learns faster than OC, as shown in Figure 2a. One pos-
sible reason could be that in AOC, options specialize to
different regions and enable quicker learning because of less
overlap between their usage. Furthermore, a comparison
between option domination in AOC and OC (see section
A.3) indicates that the latter prevents it.

4.2. Transfer in the four-rooms environment

We perform two experiments to assess the transfer capability
of AOC: goal transfer (the goal is changed to a new random
location) and blocked hallway (same goal but a random hall-
way is blocked). AOC transfer I and transfer II respectively
represent the scenarios where the weights w1 and w2 are
kept unchanged or are set to 0 to give priority to option
learning over attention regularization, before learning in the
new task. From Figures 2b and 2c, it can be seen that in spite
of the option volatility that aids OC transfer, AOC transfer
II performs similarly in the goal transfer setting and both
variants of AOC show superior initial performance in the
blocked hallway setting with transfer II being faster overall.
The speed of AOC transfer II is even more apparent when
the agent needs to go all the way around the blocked hallway
(see section A.4). The slower transfer of AOC transfer I
can be explained by the over-preference towards optimizing
attention characteristics which AOC transfer II mitigates.

From another perspective, upon transfer, option-critic com-
pletely relearns the options. Figure 5 shows a specific in-
stance of transfer. Comparing Figure 1a with Figures 5a and
5b shows that there is little similarity between the option
behavior before and after transfer with OC. We argue that
for options to be beneficial for generalization, they should
exhibit similar behavior upon transfer, and only change as

(a) Training curves (b) Goal transfer (c) Blocked hallway

Figure 2. Learning and transfer (averaged over 15 runs) in the four-rooms domain with 4 options.
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required, so that previously learned behaviors can be lever-
aged, and so that options can be efficiently composed into
even higher levels of behavior. AOC exhibits this qual-
ity. A comparison of Figures 1b and 1c with Figures 5c
to 5f shows that option attentions remain fixed indicating
that each option remains in its assigned space, and that the
option behavior remains relatively consistent upon transfer.

4.3. Arcade Learning Environment

For the ALE (Bellemare et al., 2013), we use 2 options with
γ = 0.99. Each observation s is a stack of 4 frames. The
option attentions hω,φ are state dependent and are learned
with a convolutional neural network. Each option’s attention
has the same dimensions as a single frame, and is shared
across all frames in the input stack. We refer to this as the
shared-attention model. The option policies, values and
terminations are learned with a deep network similar to
option-critic. The architecture is shown in section C.

In addition to maximizing the total expected return, the atten-
tions are constrained to exhibit some desired characteristics
like diversity (enforced by maximizing the L1 norm between
the object attentions of the options), sparsity (by penalizing
non-zero attentions for the background) and regularity (be-
tween object pixels by penalizing frequent changes in their
attention values). The objects and background are identified
by finding the connected components in the observation
(Figure 3b). Thus, for the atari domain, the L term in Algo-
rithm 1 is enforced by addingw1L1+w2L2+w3L3+w4L4

to the network loss function, where L1, L2, L3 are the losses
for attention diversity, sparsity and regularity respectively.
The additional regularizer L4 is added to prevent attentions
from collapsing to zeros. w1, w2, w3 and w4 represent their
respective weights. More details regarding hyperparameters
are provided in section C.

For the Asterix environment, the values 5000, 0.01, 100,
and 1 for the weights w1, w2, w3 and w4 respectively, re-
sulted in diverse attentions and good performance (Figure
3). AOC achieves a similar sample complexity compared
to OC, despite also having to learn the state-dependent at-

tention mechanism. Learning the attentions enables options
to specialize early on, and hence speed up training, despite
having more parameters to learn. Figures 3c and 3d show
the resulting option attentions and indicate that the options
have respectively specialized to behaviors pertaining to the
main sprite’s position in the upper and lower half of the
frame. Thus, AOC allows for learning diverse and inter-
pretable options in complex environments too. Additional
atari results are shown in section B.

5. Related work
Specific to the options framework (Sutton et al., 1999), there
have been many recent approaches to incentivize learned
options to be diverse (Eysenbach et al., 2018), temporally
extended (Harb et al., 2018), more abstract (Riemer et al.,
2018), and easy to plan (Harutyunyan et al., 2019) and
explore (Jinnai et al., 2019) with. The interest option-critic
method (Khetarpal et al., 2020) learns the initiation sets
as differentiable interest functions, but the initialization of
the interest functions is biased towards all options being
available everywhere. Our AOC approach does not require
any special initializations. Deep skill chaining (Bagaria and
Konidaris, 2020) learns a chain of options by backtracking
from the goal and ensuring that the learned initiation set of
one option overlaps with the termination of the preceding
option. Although each option performs state abstraction, the
resulting options are highly dependent on the given task and
must be relearned upon transfer.

6. Conclusion
To the best of our knowledge, our method is the first to com-
bine temporal and state abstraction in a flexible end-to-end
gradient based approach and results in learned options that
are diverse, stable, interpretable, reusable and transferable.
We demonstrate that the addition of an attention mechanism
prevents option degeneracy, a major long standing problem
in option discovery, and also relaxes the assumption of uni-
versal option availability. It also provides a highly intuitive
method to control the characteristics of the learned options.

(a) Training curves (b) Asterix frame (c) Attention of option: 0 (d) Attention of option: 1

Figure 3. Training curves, a game frame, and learned option attentions for Asterix.
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Appendix

A. Other four-rooms experiments
A.1. Comparison of option stability between AOC and OC

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. (a) to (c): even after convergence, options learned with OC are volatile and continue to change frequently. (d) to (f): AOC
learns more stable options which continue to exhibit similar behavior. In the snapshots of the options above, for both OC and AOC,
100,000 frames of training has been performed between successive rows. The goal is the north hallway, shown in green.

A.2. Comparison of option transfer between AOC and OC

A comparison between options and attentions before and after transfer with AOC shows that option attentions remain fixed
indicating that each option remains in its assigned space, and that the option behavior remains relatively consistent upon
transfer.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. (a) and (b): resulting options learned by option-critic upon goal transfer and transfer with blocked hallway respectively. (c) and
(d): the resulting option attentions and usage upon goal transfer. (e) and (f): the resulting option attentions and usage upon transfer with
blocked hallway. For the goal transfer plots above, the goal is shifted from north hallway to the top left state in the north west room. For
blocked hallway transfer, the goal is kept fixed as the north hallway, but the east hallway is blocked. The transfer results shown here are
with OC and AOC transfer I. The goal states are shown in green.

A.3. Comparison of dominant option usage in AOC and OC

A comparison of the usage of the dominant option in AOC and OC is shown in Figure 6. At each training checkpoint, the
dominant option usage is averaged over 50 test episodes for each of the 15 independent training runs. The shaded region
represents 1 standard deviation.

A.4. Blocked hallway transfer: hard transfers

There are cases where blocking a hallway may mean that the agent has to go all the way around this blockage to reach the
goal. For example, if the goal is in the top right room, the east hallway is blocked and the agent starts in the lower right
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Figure 6. Comparison of average usage of the dominant option in the four-rooms domain.

room, then the agent must navigate all the way around the environment, through 3 hallways, to reach the goal. This subset of
blocked hallway runs are referred to as hard transfers. A comparison between AOC and OC in handling such hard transfers
is shown in Figure 7b and indicates the more apparent benefit of AOC with hard transfers. It was also observed that on
some occasions with hard transfer, OC failed to learn altogether unlike AOC which always learned an optimal policy upon
transfer. The runs shown in Figure 7b are a subset (approximately half) of the runs shown in Figure 7a. Note that Figure 7a
is the same as Figure 2c.

(a) Blocked hallway: all (b) Blocked hallway: only hard transfer

Figure 7. (a) Transfer comparison for all transfers in the blocked hallway setting. (b) Transfer comparison for hard transfers in the blocked
hallway setting.

A.5. Hardcoded option attentions

In the case of hardcoded attention where each option’s attention is manually limited to one specific and distinct room (i.e. 1
for all states inside the room and 0 elsewhere), slower learning is observed. This is likely because hardcoding attentions de
facto removes option choice from the agent, and requires all options to be optimal to get good performance. When we tried
hardcoded attention with 8 options (2 per room), we got better performance, but still significantly slower than AOC and OC.
Figure 8 shows the comparison of the learning curves. Each curve is averaged over 15 runs and the shaded region indicates
0.25 standard deviation.

A.6. Quantitative measures for four-rooms options and attentions

All of the following quantitative measures are averaged over 15 independent runs with different goal locations.
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Figure 8. Comparison of OC, AOC, and AOC with hardcoded attentions

A.6.1. QUANTITATIVE MEASURE FOR ATTENTION DIVERSITY

After training, the argmax operation applied on the option dimension across the attention maps gives the option with most
attention for each state in the environment. Let the option which has the highest attention in most states be termed the
most attentive option and let the ratio of its number of highest attention states to total states be called most attentive option
coverage. Similarly, let the option which has the highest attention in least states be termed the least attentive option and let
the ratio of its number of highest attention states to total states be called least attentive option coverage. The closer both
the least and most attentive option coverages are to 25% (in the case of 4 options), the more diverse the attentions. When
the weights w1 and w2 are 2.0 (which we found to be the most optimal), least attentive option coverage = 8.07% and most
attentive option coverage = 48.58%. These values indicate that each option has a non-zero area where it is most attentive.

A.6.2. QUANTITATIVE MEASURE FOR ATTENTION OVERLAP

After training, let the matrix of maximum attention values for each state (across options) be termed as
max attention matrix. Let the matrix of next maximum (2nd highest) attention values for each state (across options)
be termed as second max attention matrix. Let the difference between these two matrices be called diff . Then,
a measure of the percentage of state space area where only one option attends to can be calculated as sum((diff >
0.3)&&(second max attention matrix < 0.05)) ∗ 100/total states. Here, && denotes the element-wise logical and
operation. This measure calculates the percentage of area where there is no competition among option attentions and there is
clearly only one option’s attention for each state in this area. The higher this measure is, the better. When the weights w1

and w2 are 2.0, this measure was 53.33%. For the remaining 46.66% of the area, it was usually observed to be the case that
2 options’ attentions competed for this area (note that this also includes cases where the difference in option attentions is
very high i.e. 0.5 or greater but where the second highest option attention was non negligible like 0.15).

A.6.3. QUANTITATIVE MEASURES OF VARIANCE IN OPTION USAGE

The mean option usage for both AOC and OC is near 0.25 for each option (option domination balances out across runs in
OC). The standard deviation of option usages for AOC and OC are respectively [0.19, 0.19, 0.22, 0.18] and [0.27, 0.33, 0.37,
0.35] i.e. OC has 3 to 4 times more variance.

A.6.4. QUANTITATIVE MEASURE OF CONSISTENCY BETWEEN OPTION ATTENTIONS AND USAGE

The probability that an option is executed when its corresponding attention in a state is < 0.05 is only 0.089. This indicates
that option usage is largely consistent with the corresponding option attentions.

It should be noted that in the cases where multiple options have significant non-zero attentions in a state, it can be expected
that any of these options may be executed. For example, Figure 9 shows the case where multiple options attend to states in
the bottom right room. In this case, there is some overlap between the usage of the options that have high attention in these
states. Usage in other rooms is still quite distinct.



Attention Option-Critic

(a)

(b)

Figure 9. When multiple options have significant overlapping attentions in a state, any of these options may be executed. The goal is
shown in green.

B. Other atari experiments
B.1. Atari shared-attention results

As described previously, in the shared-attention model, each option’s attention is shared across all the frames of the
input stack. The advantage of this approach is that the obtained attentions are much more distinct and the options are
more specialized. The disadvantage is that the learning performance and the option diversity is sensitive to the chosen
hyperparameters. Figure 10 shows the training curves and the option attentions when trained with hyperparameter values
5000, 0.01, 100, and 1 for the weights w1, w2, w3 and w4 respectively (these weights were obtained after tuning on
the Asterix environment with the frame-dependent attention model). From the figure, it can be observed that the AOC
shared-attention model achieves similar performance compared to OC and also results in diverse options with distinct areas
of focus.

B.2. Atari frame-dependent attention results

In the frame-dependent attention model, each option’s attention is learned individually for each frame on the input stack.
Frame stacking implicitly enforces temporal regularization between attentions of successive frames, so we do not specially
account for this. The advantage of this approach is the lower sensitivity towards the attention hyperparameters. The
disadvantage is the increased overlap between option attentions resulting in decreased option diversity. Figure 11 shows the
training curves and the option attentions when trained with hyperparameter values 5000, 0.01, 100, and 1 for the weights w1,
w2, w3 and w4 respectively (these weights were obtained after tuning on the Asterix environment with the frame-dependent
attention model). From the figure, it can be observed that the AOC frame-dependent attention model achieves similar
performance compared to OC and also results in diverse options with distinct areas of focus. Comparing the learning curves
of the shared-attention model and the frame-dependent attention model, it can be seen that the latter has slower initial
performance, and this is expected since it must learn more parameters (since option attentions are learned individually for
each input frame in the stack).

C. Reproducibility and training details
C.1. Algorithm

Algorithm 1 shows the algorithm for AOC.

C.2. Four-rooms environment

In the four-rooms navigation task, the agent must reach a specified goal. The observation space consists of one-hot-encoded
vectors for every state in the grid. The available actions are up, down, left and right. The chosen action is executed
with probability 0.98 and a random action is executed with 0.02 probability. The reward is +20 upon reaching the goal,
and -1 otherwise. We use 4 options for learning, with a discount factor of 0.99. The attention hω,φ for each option ω is
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Figure 10. AOC results for the shared-attention model. Column-wise: learning curves, game frame, option 0 attention, option 1 attention.
(a) Asterix (b) Assault (c) Krull (d) Yars’ Revenge

initialized randomly as a vector of the same length as the input observation s. Thus, in this situation, the option attentions are
independent of the state observation. We employ a 2-layer shared-parameter neural network to approximate the intra-option
policies, the option termination functions, and the option values. In our implementation of AOC (for all experiments), the
network learns the option values QΩ to which the ε-greedy strategy is applied to determine the policy over options πΩ.
Intra-option exploration is enforced with entropy regularization.

For all experiments in the four-rooms domain, we use the following option learning model for both AOC and the OC
baseline: a 2-layer neural (layerwise with 60 and 200 neurons followed by ReLU activation) with fully-connected branches
for option values, intra-option policies (with softmax function) and the option terminations (with sigmoid function). The
parameters used for both AOC and baseline OC (after a hyperparameter search) are shown in Table 1.

We performed a grid search across multiple values for w1 and w2, the weights for cosine similarity between the attentions
and the temporal regularization loss respectively. The search space for both weights was the range [0, 5.0] in increments of
0.5. The best values (judged according to qualitative attention diversity and quantitative measures explained above) were
found to be 2.0 for both w1 and w2. The shaded regions in Figure 2a represent 0.5 standard deviation, and 0.25 standard
deviation in Figures 2b and 2c. All learning curves for the four-rooms domain are averaged over 15 independent runs with
randomly chosen goals (before and after transfer) and randomly blocked hallways.
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Figure 11. AOC results for the frame-dependent-attention model. Note that the attention maps shown here are the sum of frame-wise
attention maps for each option. Framewise attentions are much more distinct and are similar to the attention maps from the shared-attention
model. Column-wise: learning curves, game frame, option 0 attention, option 1 attention. (a) Asterix (b) Assault (c) Krull (d) Yars’
Revenge

(a) Architecture for four-rooms (b) Architecture for atari

Figure 12. The shared network models for option learning with AOC. � denotes element-wise multiplication. (a) In the four-rooms
environment, the attentions are independent of the state observation. (b) In atari environments, the attentions are observation dependent.

C.3. Arcade Learning Environment

For experiments in the Arcade Learning Environment, the structure of the option learning model for both AOC and the OC
baseline is shown in Table 2.

Each convolution layer is followed by ReLU activation. The FC1 layer is followed by fully-connected branches for option
values, intra-option policies (with softmax function) and the option terminations (with sigmoid function). For AOC, the



Attention Option-Critic

PARAMETER VALUE

NUMBER OF WORKERS 5
GAMMA (γ) 0.99
NUMBER OF OPTIONS 4
OPTIMIZER RMSPROP
LEARNING RATE 10−3

OPTION EXPLORATION LINEAR(100 , 10−1 , 105)
ENTROPY LINEAR(102 , 10−1 , 105)
ROLLOUT LENGTH 5

Table 1. Hyperparameters for four-rooms

LAYER IN-CHANNELS OUT-CHANNELS KERNEL-SIZE STRIDE

CONV1 - 32 8 4
CONV2 32 64 4 2
CONV3 64 64 3 1
FC1 7× 7× 64 512 - -

Table 2. Option learning model for ALE environment

structure of the attention learning model is the same as in Table 2, but another layer FC2 is connected to FC1. In terms of
model architecture, the only difference between the shared-attention model and the frame-dependent attention model is the
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number of neurons in FC2. For the former, it is equal to the number of pixels in a single frame of the input stack and for the
latter it is equal to the total number of pixels in the input stack. The parameters used for both models of AOC and baseline
OC (after a hyperparameter search) are shown in Table 3. The input observation is a grayscale 84× 84× 4 tensor.

PARAMETER VALUE

NUMBER OF WORKERS 16
GAMMA (γ) 0.99
NUMBER OF OPTIONS 2
OPTIMIZER RMSPROP
LEARNING RATE 10−4

OPTION EXPLORATION 10−1

ENTROPY 10−2

ROLLOUT LENGTH 5
FRAMESTACK 4

Table 3. Hyperparameters for ALE

We performed a grid search across multiple values for w1 and w2 (weights for attention diversity), w3 (weight for attention
sparsity), and w4 (weight for attention regularity). The search space for all weights was the range [10−1, 105] in semi-
logarithmic increments. The best weight values were found to be 5000, 1.0, 0.01 and 100 respectively, tuned on the
shared-attention model for the Asterix environment.

Each atari learning curve is an average over 3 random seeds and the shaded region represents 1 standard deviation.


