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One Solution is Not All You Need:
Few-Shot Extrapolation via Structured MaxEnt RL
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Abstract
While reinforcement learning algorithms can
learn effective policies for complex tasks, these
policies are often brittle to even minor task varia-
tions, especially when variations are not explicitly
provided during training. One natural approach to
this problem is to train agents with manually spec-
ified variation in the training task or environment.
However, this may be infeasible in practical situa-
tions. The key insight of this work is that learning
diverse behaviors for accomplishing a task can di-
rectly lead to behavior that generalizes to varying
environments, without needing to perform explicit
perturbations during training. By identifying mul-
tiple solutions for the task in a single environ-
ment during training, our approach can generalize
to new situations by abandoning solutions that
are no longer effective and adopting those that
are. We theoretically characterize a robustness set
of environments that arises from our algorithm
and empirically find that our diversity-driven ap-
proach can extrapolate to various changes in the
environment and task.

1 Introduction

Deep reinforcement learning (RL) algorithms have demon-
strated promising results on a variety of complex tasks,
such as robotic manipulation (Levine et al., 2016; Gu et al.,
2017) and strategy games (Mnih et al., 2013; Silver et al.,
2017). Yet, these reinforcement learning agents are typically
trained in just one environment, leading to performant but
narrowly-specialized policies — policies that are optimal
under the training conditions, but brittle to even small envi-
ronment variations (Zhang et al., 2018). A natural approach
to resolving this issue is to simply train the agent on a dis-
tribution of environments that correspond to variations of
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the training environment (Cobbe et al., 2018; Farebrother
et al., 2018; Igl et al., 2019; Rajeswaran et al., 2016). These
methods assume access to a set of user-specified training en-
vironments that capture the properties of the situations that
the trained agent will encounter during evaluation. How-
ever, this assumption places a significant burden on the user
to hand-specify all degrees of variation, or may produce
poor generalization along the axes that are not varied suffi-
ciently (Zhang et al., 2018).

One way of resolving this problem is to design algorithms
that can automatically construct many variants of its training
environment and optimize a policy over these variants. One
can do so, for example, by training an adversary to perturb
the agent (Pinto et al., 2017; Pattanaik et al., 2018). While
promising, adversarial optimizations can be brittle, overly
pessimistic about the test distribution, and compromise per-
formance.

In contrast to both generalization and robustness approaches,
humans do not need to practice a task under explicit pertur-
bations in order to adapt to new situations. As a concrete
example, consider the task of navigating through a forest
with multiple possible paths. Traditional RL approaches
may optimize for and memorize the shortest possible path,
whereas a person will encounter, and remember many differ-
ent paths during the learning process, including suboptimal
paths that still reach the goal. While a single optimal policy
would fail if the shortest path becomes unavailable, a reper-
toire of diverse policies would be robust even when a par-
ticular path is no longer successful. Concretely, practicing
and remembering diverse solutions to a task can naturally
lead to robustness. In this work, we consider how we might
encourage reinforcement learning agents to do the same –
learning a breadth of solutions to a task and remembering
those solutions such that they can adaptively switch to a new
solution when faced with a new environment.

The key contribution of this work is a framework for policy
robustness by optimizing for diversity. Rather than training
a single policy to be robust across a distribution of environ-
ments, we learn multiple policies such that these behaviors
are collectively robust to a new distribution over MDPs. Crit-
ically, our approach can be used with only a single training
environment, rather than requiring access to the entire set of
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environments over which we wish to generalize. We theo-
retically characterize the set of environments over which we
expect the policies learned by our method to generalize, and
empirically find that our approach can learn policies that ex-
trapolate over a variety of aspects of the environment, while
also outperforming prior standard and robust reinforcement
learning methods.

2 Preliminaries

The goal in a reinforcement learning problem is to optimize
cumulative discounted reward in a Markov decision process
(MDP)M, defined by the tuple (S,A,P,R, γ, µ), where S
is the state space, A is the action space, P(st+1|st, at) pro-
vides the transition dynamics,R(st, at) is a reward function,
γ is a discount factor, and µ is an initial state distribution. A
policy π defines a distribution over actions conditioned on
the state, π(at|st). Given a policy π, the probability density
function of a particular trajectory τ = {si, ai, }Ti=1 under
policy π can be factorized as follows:

p(τ) = µ(s0) ·ΠT
t=0π(at|st) · P(st+1|st, at).

The expected discounted sum of rewards of a policy π is is
given by: RM(π) = Eτ∼π [R(τ)] =

∑
t γ

tR(st, at). The
optimal policy π∗M maximizes the return, RM(π): π∗M =
arg maxπ RM(π).

Latent-Conditioned Policies. In this work, we will con-
sider policies conditioned on a latent variable. A latent-
conditioned policy is described as π(a|s, z) and is condi-
tioned on a latent variable z ∈ Rd. The latent variable z is
drawn from a known distribution z ∼ p(Z). The probability
of observing a trajectory τ under a latent-conditioned policy
is p(τ) =

∫
z
p(τ |z)p(z), where

p(τ |z) = µ(s0) ·ΠT
t=0π(at|st, z) · P(st+1|st, at).

Mutual-Information in RL. In this work, we will maxi-
mize the mutual information between trajectories and latent
variables. Estimating this quantity is difficult because com-
puting marginal distributions over all possible trajectories,
by integrating out z, is intractable. We can instead max-
imize a lower bound on the objective which consists of
summing the mutual information between each state st in a
trajectory τ and the latent variable z. It has been shown
that a sum of the mutual information between states in
τ , s1, · · · , sT , and the latent variable z lower bounds the
mutual information I(τ, z) (Jabri et al., 2019). Formally,
I(τ ; z) ≥

∑T
t=1 I(st; z).

Finally, we can lower-bound the mutual information
between states and latent variables, as I(S;Z) ≥
Ez∼p(z),s∼π(z)[log qφ(z|s)] − Ez∼p(z)[log p(z)] (Eysen-
bach et al., 2018), where the posterior p(z|s) can be ap-
proximated with a learned discriminator qφ(z|s).

Figure 1: We evaluate SMERL on 3 types of environment pertur-
bations: (a) the presence of an obstacle, (b) a force applied to one
of the joints, and (c) motor failure at a subset of the joints.

3 Problem Statement: Few-Shot Robustness

In this paper, we aim to learn policies on a single train-
ing MDP that can generalize to perturbations of this MDP.
In this section, we formalize this intuitive goal into a
concrete problem statement that we call “few-shot robust-
ness.” During training, the algorithm collects samples from
the (single) training MDP, M = (S,A,P,R, γ, µ). At
test time, the agent is placed in a new test MDP M′ =
(S,A,P ′,R′, γ, µ), which belongs to a test set of MDPs
Stest. Each MDP in this test set has identical state and action
spaces asM, but may have a different reward and transition
function (see Figure 1). In Appendix A, we formally define
the nature of the changes from training time to test time,
which are guided by practical problems of interest, such as
the navigation example described in Section 1. In the test
MDP, the agent must acquire a policy that is optimal after
only a handful of trials. Concretely, we refer to this protocol
as few-shot robustness, where a trained agent is provided a
budget of k episodes of interaction with the test MDP and
must return a policy to be evaluated in this MDP. The final
policy is evaluated in terms of its expected return inM′.

4 Structured Maximum Entropy
Reinforcement Learning

In this section, we present our approach for addressing the
few-shot robustness problem defined in Section 3. We first
present a concrete optimization problem that optimizes for
few-shot robustness, then discuss how to transform this ob-
jective into a tractable form, and finally present a practical
algorithm. Our algorithm, Structured Maximum Entropy
Reinforcement Learning (SMERL), optimizes the approxi-
mate objective on a single training MDP.

4.1 Optimization with Multiple Policies

Our goal is to be able to learn policies on a single MDP that
can achieve (near-)optimal return when executed on a test
MDP in the set Stest. In order to maximize return on multiple
possible test MDPs, we seek to learn a continuous (infinite)
subspace or discrete (finite) subset of policies, which we
denote as Π̄. Then, given an MDPM′ ∈ Stest, we select
the policy π ∈ Π̄ that maximizes return R(M′) on the test
MDP. We wish to learn Π̄ such that for any possible test
MDPM′ ∈ Stest, there is always an effective policy π ∈ Π̄.
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Concretely, this gives rise to our formal training objective:

Π∗ = arg max
Π̄⊂Π

[ ∑
M′∈Stest

(
max
π∈Π̄

RM′(π)

)]
. (1)

Our approach for maximizing the objective in Equation 1 is
based on two insights. First, we represent the set Π̄ using
a latent variable policy π(a|s, z). Such latent-conditioned
policies can express multi-modal distributions. The latent
variable can index different policies, making it possible to
represent multiple behaviors with a single object. Second,
we can produce diverse solutions to a task by encouraging
the trajectories of different latent variables z to be distinct
while still solving the task. An agent with a repertoire
of such distinct latent policies can adopt a slightly sub-
optimal solution if an optimal policy is no longer viable,
or highly sub-optimal, in a test MDP. Concretely, we aim
to maximize expected return while also producing unique
trajectory distributions.

To encourage distinct trajectories for distinct z values, we in-
troduce a diversity-inducing objective that encourages high
mutual information between p(Z), and the marginal trajec-
tory distribution for the latent-conditioned policy π(a|s, z).
We optimize this objective subject to the constraint that each
policy achieves return in M that is close to the optimal
return. This optimization problem is:

max
θ

I(τ, z) s.t. ∀z,RM (πθ(·|s, z)) ≥ RM(π∗M(·|s))−ε,
(2)

where πθ = πθ(·|s; z), ε > 0, and θ∗ are parameters which
maximize the objective. The constrained optimization in
Equation 2 aims at learning a space of policies, indexed by
the latent variable z, such that the set Π̄ = {π(·|·, z)|z ∼
p(z)} covers the space of possible policies π(a|s) that in-
duce near-optimal, long-term discounted return on the train-
ing MDP M. The mutual information objective I(τ, z)
enforces diversity among policies in Π̄, but only when these
policies are close to optimal.

4.2 The SMERL Optimization Problem
In order to tractably solve the optimization problem 2, we
lower-bound the mutual information I(τ, z) by a sum of
mutual information terms over individual states appearing
in the trajectory τ , as discussed in Section 2. We then obtain
the following surrogate, tractable optimization problem:

max
θ

T∑
t=1

I(st; z) s.t. ∀z,RM (πθ) ≥ RM(π∗M)−ε. (3)

Following the argument from (Eysenbach et al., 2018),
we compute an unsupervised reward function from the
mutual information between states and latent variables as
r̃(s, a) = log qφ(z|s)− log p(z), where qφ(z|s) is a learned

discriminator. Since the term H(Z) encourages the distri-
bution over the latent variables to have high entropy, we fix
p(z) to be uniform.

In order to satisfy the constraint in Equation 3 that I(S;Z) is
maximized only when the latent-conditioned policy achieves
return RM (πθ) ≥ RM(π∗M) − ε, we only optimize the
unsupervised reward when the environment return is within
a pre-defined ε distance from the optimal return.

To this end, we optimize the sum of two quantities: (1) the
discounted return obtained by executing a latent-conditioned
policy in the MDP, RM(πθ(·|s, z)), and (2) the discounted
sum of unsupervised rewards

∑
t γ

tr̃t, only if the policy’s
return satisfies the condition specified in Equation 3. Com-
bining these components leads to the following optimization
in practice (1[·] is the indicator function, α > 0):

max
θ

Ez∼p(z)

[
RM(πθ)+α1[RM(πθ)≥RM(π∗M)−ε]

∑
t

γtr̃(st, at)

]
(4)

4.3 Practical Algorithm

We implement SMERL using soft actor-critic (SAC)
(Haarnoja et al., 2018), but with a latent variable maxi-
mum entropy policy πθ(a|s, z). The set of latent variables
is chosen to be a fixed discrete set, Z, and we set p(z) to
be a categorical distribution over this set. At the beginning
of each episode, a latent variable z is sampled from p(Z)
and the policy πθ(·|·, z) is used to sample a trajectory. The
transitions obtained, as well as the latent variable z, are
stored in a replay buffer. When sampling states from the
replay buffer, we compute the reward to optimize with SAC
according to Equation 3 from Section 4.2:

rSMERL(st, at) = r(st, at)+α1RM(πθ)≥RM(π∗M)−εr̃(st, at).
(5)

For all states sampled from the replay buffer, we optimize
the reward obtained from the environment r. For states in
trajectories which achieve near-optimal return, the agent
also receives unsupervised reward r̃, which is higher-valued
when the agent visits states that are easy to discriminate, as
measured by the likelihood of a discriminator qφ(z|s). The
discriminator is trained to infer the latent variable z from the
states visited when executing that latent-conditioned policy.
In order to measure whether RM (πθ) ≥ RM(π∗M) − ε,
we first train a baseline SAC agent on the environment, and
treat the maximum return achieved by the trained SAC agent
as the optimal return RM(π∗M).

The full training algorithm is described in Algorithm 1. Fol-
lowing the few-shot robustness evaluation protocol, given a
budget of K episodes, each latent variable policy πθ(·|s, z)
is executed in a test MDP M′ for 1 episode. The policy
which achieves the maximum sampled return is returned
(see Algorithm 2).
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Algorithm 1 SMERL: Training in training MDPM
while not converged do

Sample latent z ∼ p(z) and initial state s0 ∼ µ.
for t← 1 to steps_per_episode do

Sample action at ∼ πθ(·|st, zt).
Step environment: rt, st+1 ∼ P(rt, st+1|st, at).
Compute qφ(z|st+1) with discriminator.
Let r̃t = log qφ(z|st+1)− log p(z).

end for
Compute RM(πθ) =

∑
t rt.

for t← 1 to steps_per_episode do
Compute reward rSMERL according to Eq 5.
Update θ to maximize rSMERL with SAC.
Update φ to maximize log qφ(z|st) with SGD.

end for
end while

Algorithm 2 SMERL: Few-shot robustness evaluation
in test MDPM′
RMAX ← −∞
for i ∈ {1, 2, ...,K} do

Rollout policy πθ(·|s, zi) in MDPM′ for 1 episode and
compute RM′(πθ).
RMAX ← max(RMAX, RM′(πθ))
πbest ← πθ(·|s, zi)

end for
Return πbest

5 Experimental Evaluation
The goal of our experimental evaluation is to test the central
hypothesis of our work: does structured diversity-driven
learning lead to policies that generalize to new MDPs? We
also compare the performance of our method relative to prior
approaches for generalizable and robust policy learning. To
this end, we conduct experiments in two continuous control
environments using the MuJoCo physics engine (Todorov
et al., 2012): HalfCheetah-Goal and Walker2d-Velocity.

In HalfCheetah-Goal, the task is to navigate to a target goal
location. In Walker-Velocity, the task is to move forward at
a particular velocity. We perform evaluation in three types
of test conditions: (1) an obstacle is present on the path to
the goal, (2) a force is applied to one of the joints at a pre-
specified small time interval (t1, t2) from time step t1 = 10
to time step t2 = 15, and (3) a subset of the motors fail for
time intervals of varying lengths. For each test environment,
we vary the amount of perturbation to measure the degree to
which different algorithms are robust. We vary the height of
the obstacle in (1), the magnitude of the force in (2), and the
time interval length for which motor failure occurs in (3).

5.1 Can SMERL Quickly Generalize To Extrapolated
Environments?

We study whether these policies are robust to various test
conditions in continuous-control problems. We compare
SMERL to standard maximum-entropy RL (SAC), an ap-
proach that learns multiple diverse policies but does not
maximize a reward signal from the environment (DIAYN),
and a robust RL method (RARL). By comparing to SAC and
DIAYN, we aim to test the importance of learning diverse
policies and of ensuring near-optimal return, for achiev-
ing robustness. By comparing to RARL, we aim to under-
stand how SMERL compares to adversarial optimization
approaches.

We report results in Figure 2. On all types of test pertur-
bations, we find that SMERL is consistently as robust or

Figure 2: Figure comparing the robustness of SAC, DIAYN,
RARL, and SMERL to 3 types of perturbations, on HalfCheetah-
Goal and Walker-Velocity. SMERL is more consistently robust to
environment perturbations than other maximum entropy, diversity
seeking, and robust RL methods.

more robust than SAC and DIAYN. When the perturbation
amount is small, the performance of SAC and SMERL is
approximately the same. As the perturbation magnitude
increases (e.g. obstacle height, force magnitude, or agent’s
mass), the performance of SAC quickly drops while SMERL
is still able to achieve near-optimal return. With large pertur-
bation magnitudes, all methods fail to complete the task on
most test environments, as we expect. RARL is robust to the
force and motor failure perturbations but cannot solve the
task when an obstacle is present. Since DIAYN is trained
independently of task reward, it only occasionally solves
the task and otherwise produces policies that perform struc-
tured diverse behavior but don’t achieve near-optimal return.
SMERL balances the task reward and DIAYN reward to
achieve few-shot robustness, since it only adds the DIAYN
reward when the latent policies are near-optimal.

6 Conclusion
In this paper, we present a robust RL algorithm, SMERL,
for learning RL policies that can extrapolate to out-of-
distribution test conditions with only a small number of
trials. The core idea underlying SMERL is that we can learn
a set of policies that finds multiple diverse solutions to a
single task.
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Appendices

A Analysis of SMERL

We now provide a theoretical analysis of SMERL. We show
how the tractable objective shown in Equation 4 can be
derived out of the optimization problem in Equation 1 for
particular choices of robustness sets Stest of MDPs. Our
analysis in divided into three parts. First, we define our
choice of MDP robustness set. We then provide a reduction
of this set over MDPs to a robustness set over policies.
Finally, we show that an optimal solution of our tractable
objective is indeed optimal for this policy robustness set
under certain assumptions.

A.1 Robustness Sets of MDPs and Policies

Following our problem definition in Section 2, our robust-
ness sets will be defined over MDPsM′, which correspond
to versions of the training MDP M with altered reward
or dynamics. For the purpose of this discussion, we limit
ourselves to discrete state and action spaces. Drawing in-
spiration from the navigation example in Section 1, we now
define our choice of robustness set, which we will later con-
nect to the set of MDPs to which we can expect SMERL to
generalize. Hence, we define the MDP robustness set as:

Definition 1. Given a training MDP M and ε > 0, the
MDP robustness set, SM,ε, is the set of all MDPsM′ which
satisfy two properties:

(1)RM(π∗M)−RM(π∗M′) ≤ ε
(2) The trajectory distribution of π∗M′ is the same on

M andM′.

Intuitively, the set SM,ε consists of all MDPs for which the
optimal policy π∗M′ achieves a return on the training MDP
that is close to the return achieved by its own optimal policy,
π∗M. Additionally, the optimal policy ofM′ must produce
the same trajectory distribution in M′ as in M. These
properties are motivated by practical situations, where a
perturbation to a training MDP, such as an obstacle blocking
an agent’s path, allows different policies in the training MDP
to be optimal on the test MDP. This perturbation creates a
test MDPM′ whose optimal policy achieves return close
to the optimal policy of M since it takes only a slightly
longer path to the goal, and that path is traversed by the
same policy in the original MDPM. Given this intuition,
the MDP robustness set SM,ε will be the set that we use for
the test set of MDPs Stest in Equation 1 in our upcoming
derivation.

While we wish to generalize to MDPs in the MDP robust-
ness set, in our training protocol an RL agent has access
to only a single training MDP. It is not possible directly

optimize over the set of test MDPs, and SMERL instead
optimizes over policies in the training MDP. In order to ana-
lyze the connection between the policies learned by SMERL
and robustness to test MDPs, we consider a related robust-
ness set, defined in terms of sub-optimal policies on the
training MDP:
Definition 2. Given a training MDP M and ε > 0, the
policy robustness set, Sπ∗M,ε is defined as

Sπ∗M,ε = {π | RM(π∗M)−RM(π) ≤ ε and π is a deterministic policy }.

The policy robustness set consists of all policies which
achieve return close to the optimal return of the training
MDP. Since the optimal policies of the MDP robustness set
also satisfy this condition, intuitively, Sπ∗M,ε encompasses
the optimal policies for MDPs from SM,ε.

Next, we formalize this intuition, and in Sec. A.3 show how
this convenient relationship can replace the optimization
over SM,ε in Eq. 1 with an optimization over policies, as
performed by SMERL.

A.2 Connecting MDP Robustness Sets with Policy
Robustness Sets

Every policy in Sπ∗M,ε is optimal for some MDP in SM,ε.
Thus, if an agent can learn all policies in Sπ∗M,ε, then we
can guarantee the ability to perform optimally in each and
every possible MDP that can be encountered at test time. In
order to formally prove this intuition, we provide a set of
two containment results. Proofs can be found in Appendix
B.
Proposition 1. For each MDPM′ in the MDP robustness
set SM,ε, π∗M′ exists in the policy robustness set Sπ∗M,ε.
Proposition 2. Given an MDPM and each policy π in the
policy robustness set Sπ∗M,ε, there exists an MDP M′ =

(S,A, P̄, R̄, γ, µ) such thatM′ ∈ SM,ε and π = π∗M′ .

We next use this connection between Sπ∗M,ε an SM,ε to
verify that SMERL indeed finds a solution to our formal
training objective (Equation 1).

A.3 Optimizing the Robustness Objective

Now that we have shown that any policy in Sπ∗M,ε is opti-
mal in some MDP in SM,ε, we now show how this relation
can be utilized to simplify the objective in Equation 1. Fi-
nally, we show that this simplification naturally leads to the
trajectory-centric mutual information objective. We first
introduce a modified training objective below in Equation
6, and then show in Proposition 3 that under some mild
conditions, the solution obtained by optimizing Equation 6
matches the solution obtained by solving Equation 1:

Π∗ = arg max
Π̄⊂Π

min
π̂∈Sπ∗M,ε

[max
π∈Π̄

Eτ∼π̂ log p(τ |π)]. (6)

Proofs from this section can be found in Appendix B.
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Proposition 3. The solution to the objective in Equation 1
is the same as the solution to the objective in Equation 6
when Stest = SM,ε.

Finally, we now show that the set of policies obtained by
optimizing Equation 6 is the same as the set of solutions ob-
tained by the SMERL mutual information objective (Equa-
tion 2).

Proposition 4. [Informal] With usual notation and for
a sufficiently large number of latent variables, the set of
policies Π∗ that result from solving the optimization problem
in Equation 6 is equivalent to the set of policies πθ∗,z that
result from solving the optimization problem in Equation 2.

A more formal theorem statement and its proof are in Ap-
pendix B. Propositions 3 and 4 connect the solutions to
the optimization problems in Equation 1 and Equation 2,
for a specific instantiation of Stest. Our results in this sec-
tion suggest that the general paradigm of diversity-driven
learning is effective for robustness when the test MDPs sat-
isfy certain properties. In Section 5, we will empirically
measure SMERL’s robustness when optimizing the SMERL
objective on practical problems where the test perturbations
satisfy these conditions.

B Proofs

Proposition 1. For each MDPM′ in the MDP robustness
set SM,ε, π∗M′ exists in the policy robustness set Sπ∗M,ε.

Proof. This result follows by the definition of the set SM,ε.

Proposition 2. Given an MDPM and each policy π in the
policy robustness set Sπ∗M,ε, there exists an MDP M′ =

(S,A, P̄, R̄, γ, µ) such thatM′ ∈ SM,ε and π = π∗M′ .

Proof. This argument can be shown by first noting that
the value of any policy, π, in an MDP can be written as,
Qπ(P ) = (I − γPπ)−1 [R]. Now, for any given policy
π ∈ Sπ∗M,ε, we show that we can modify the dynamics to
P ′ such that Qπ(P ′) ≥ Qπ

′
(P ′), for all other policies π′.

Such a dynamics P ′ always exists for any policy π, since for
any optimal policy π′ in the original MDP with transition
dynamics P , we can re-write P ·π as P ·π′ = P ·π′ · ππ′ and
by modifying the transition dynamics, as P ′ = P · ππ′ . With
this transformation, π′ is optimal in this modified MDP with
dynamics P ′.

Proposition 3. The solution to the objective in Equation 1
is the same as the solution to the objective in Equation 6
when Stest = SM,ε.

Proof. We first note that for any optimal policy π∗M′ of an
MDPM′ ∈ SM,ε, the trajectory distribution in the original
MDP, pM(τ |π∗M′), is the same as the trajectory distribution
in the perturbed MDP,M′, pM′(τ |π∗M′). Now, we aim to
learn a policy π that obtains the same trajectory distribution
as π∗M′ in M′, which is also the trajectory distribution
of π∗M′ in M. Further, we know that the policy π∗M′ is
contained in the policy robustness set, , our learned policies,
Π̄, should be able to match the trajectory distribution of
any policy π′ ∈ Sπ∗M,ε, thereby, ensuring that the trajectory
distribution of at least one policy π ∈ Π̄ is close to the
trajectory distribution of π′. The objective in Equation 6
precisely uses this connection – it searches for a set of
policies, Π̄, such that at least one policy π′ ∈ Π̄ can closely
match the trajectory distribution of a given policy π∗M′ ∈
Sπ∗M,ε, which also turns out to be the set of optimal policies
forM′ ∈ SM,ε. Moreover, this trajectory matching can be
performed directly in the original MDP,M, since optimal
policies for M′ admit the same trajectory distribution in
bothM andM′.

Proposition 4. [Informal] With usual notation and for a
sufficiently large number of latent variables, the set of poli-
cies Π∗ that result from solving the optimization problem
in Equation 6 is equivalent to the set of policies πθ∗,z that
result from solving the optimization problem in Equation 2.

Proof. If the subset Π̄ were allowed to have infinite size,
then the choice of Π̄ which optimizes the optimization prob-
lem shown in Equation 6 is equal to Sπ∗M,ε. Now, when the
cardinality of the set is limited, we seek a set of policies, Π̄
that can most efficiently cover the space

For the second optimization problem, satisfying the con-
dition ∀z ∈ Z̄ RM(πz) ≥ RM(π∗M) − ε would give us a
set of K policies {πz|z ∈ Z̄}, each of which lie in the set
Sπ∗M,ε. To ensure that each of the policies is deterministic,
we minimize H(τ |Z). Since the transition function P is
deterministic, if H(τ |Z) is minimized, then each πz is de-
terministic. We also want the trajectories induced by the
policies to be different from each other so that we get all the
policies in the set Sπ∗M,ε. This is achieved by maximizing
the entropy of all the trajectories H(τ). Thus, the solution
to the second optimization problem is also equal to the set
Sπ∗M,ε.

I(τ ;Z) = H(τ)−H(τ |Z) (7)

C Experimental Setup

To estimate the optimal return value that SMERL requires,
we train SAC on a single training environment using 3 seeds
for 3 million environment steps. We then select a value of ε
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Figure 3: On HalfCheetah-Goal, we study the effects on per-
formance when (a) varyingB in obstacles test environments,
(b) varying B in the force test environments, (c) varying α
in the obstacles test environments, and (d) varying α in the
force test environments. In (a) and (b), α = 1.0, and in (c)
and (d), B = −100.0. We plot the mean performance and
standard error bars over 5 runs of the best latent-conditioned
policy on each test environment. SMERL is more sensitive
to hyperparameter settings in the obstacles test environments
as compared to the force test environments.

for SMERL to set a return threshold above which the unsu-
pervised reward is added. For SMERL, SAC, and DIAYN,
we learn |Z| = 5 latent-conditioned policies, and follow our
few-shot evaluation protocol described in Section 3 with
budget k = 5. Specifically, we run every latent-conditioned
policy once and select the policy which achieves the high-
est return on that environment; we then run the selected
policies 5 times and compute the averaged performance.
All results are reported using 3 random seeds. While the
policies learned on the train MDP are stochastic, during
evaluation, we select the mean action (SAC, DIAYN, and
SMERL). This does not make the performance worse for
any of the approaches.

C.1 Hyperparameter Sensitivity Analysis

On HalfCheetah-Goal, we examine the effect of varying
B, the environment return threshold above which we add
the unsupervised objective, and α, the weight by which the
unsupervised reward is multiplied, on the evaluation perfor-
mance of SMERL. We perform this hyperparameter study
on two test environments: HalfCheetah-Goal with an obsta-
cle and HalfCheetah-Goal with a force applied to one of the
joints. We find that the robustness of SMERL is sensitive
to the choice of α: α = 10.0 results in policies that are
more robust to the environment perturbations. In contrast,
the relationship between the value of B and evaluation per-
formance is inconsistent between the obstacles perturbation
and the force perturbation test environments.
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