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Abstract
In this paper, we study how deep RL methods
based on bootstrapping-based Q-learning can suf-
fer from a pathological interaction between func-
tion approximation and the data distribution used
to train the Q-function: with standard supervised
learning, online data collection should induce cor-
rective feedback, where new data corrects mis-
takes in old predictions. With dynamic program-
ming methods like Q-learning, such feedback may
be absent. This can lead to potential instability,
sub-optimal convergence, and poor results when
learning from noisy, sparse or delayed rewards.
Based on these observations, we propose a new
algorithm, DisCor, which explicitly optimizes for
data distributions that can correct for accumulated
errors in the value function. Using a tractable ap-
proximation of this distribution for training, Dis-
Cor results in substantial improvements in a range
of challenging RL settings, such as multi-task
learning and learning from noisy reward signals.

1. Introduction
Reinforcement learning (RL) algorithms, when combined
with high-capacity deep neural net function approximators,
have shown promise in domains ranging from robotic ma-
nipulation (Kalashnikov et al., 2018) to recommender sys-
tems (Shani et al., 2005). However, current deep RL meth-
ods can be difficult to use, due to sensitivity with respect to
hyperparameters and inconsistent and unstable convergence.
We hypothesize that one source of instability in reinforce-
ment learning with function approximation and value func-
tion estimation, such as Q-learning (Watkins and Dayan,
1992; Riedmiller, 2005; Mnih et al., 2015) and actor-critic
algorithms (Haarnoja et al., 2017; Konda and Tsitsiklis,
2002), is a pathological interaction between the data distri-
bution induced by the latest policy, and the errors induced
in the learned approximate value function as a consequence
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of training on this distribution.

While a number of prior works (Achiam et al., 2019; Fu
et al., 2019; Liu and Zou, 2018) have provided a theoretical
examination of various approximate dynamic programming
(ADP) methods, prior work has not extensively studied the
relationship between the data distribution induced by the lat-
est value function and the errors in the future value functions
obtained by training on this data. When using supervised
learning to train contextual bandits or dynamics models,
online data collection results in a kind of “hard negative”
mining: the model collects transitions that lead to good
outcomes according to the model (potentially erroneously).
This results in collecting precisely the data needed to cor-
rect errors and improve. On the contrary, ADP algorithms
that use bootstrapped targets rather than ground-truth target
values may not enjoy such corrective feedback with online
data collection in the presence of function approximation.

Since function approximation couples Q-values at differ-
ent states, the data distribution under which ADP updates
are performed directly affects the learned solution. As we
will argue in Section 2, online data collection may give
rise to distributions that fail to correct errors in Q-values
at states that are used as bootstrapping targets due to this
coupling effect. If the bootstrapping targets in ADP updates
are themselves are erroneous, then any form of Bellman
error minimization using these targets may not result in the
correction of errors in the Q-function, leading to poor perfor-
mance. In this work, we show that we can explicitly address
this by modifying the ADP training routine to re-weight
the data buffer to a distribution that explicitly optimizes for
corrective feedback, giving rise to our proposed method,
DisCor. With DisCor, transitions sampled from the data
buffer are reweighted with weights that are inversely pro-
portional to the estimated errors in their target values. Thus,
transitions with erroneous targets are down-weighted. We
show that DisCor can be derived from a principled objec-
tive that results in a simple algorithm that reweights the
training distribution based on estimated target value error,
so as to mitigate error accumulation. In practice, DisCor
can be used in conjunction with several modern deep RL
algorithms (DQN or SAC), and as we show, it substantially
improves performance in challenging RL settings, such as
multi-task RL and complex manipulation tasks.
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Background. An MDP is defined by a tuple (S,A, P,R, γ).
S,A represent state and action spaces, P (s′|s, a) and r(s, a)
represent the dynamics and reward function, and γ ∈ (0, 1)
represents the discount factor. The discounted marginal
state (and state-action) distribution of the policy π(a|s) is
denoted as dπ(s) (and dπ(s, a) = dπ(s)π(a|s)). We define
Pπ, the state-action transition matrix under a policy π as
PπQ(s, a) := Es′∼P (·|s,a),a′∼π(a′|s′)[Q(s′, a′)]. V ∗ and
Q∗ denote the optimal state-action value function obtained
by recursively iterating the Bellman optimality operator,
B∗. With function approximation, these algorithms project
the values of the Bellman optimality operator B∗ onto a
family of Q-function approximators, under a sampling or
data distribution µ. Q-function fitting is usually interleaved
with additional data collection, which typically uses a policy
derived from the latest value function, augmented with either
ε-greedy (Watkins, 1989; Mnih et al., 2015) or Boltzmann-
style (Haarnoja et al., 2018; Sutton et al.) exploration. For
commonly used ADP methods, µ simply corresponds to the
on-policy state-action marginal, µk = dπk (at iteration k)
or else a “replay buffer” (Mnih et al., 2015; Lillicrap et al.,
2015; Lin, 1992) formed as a mixture distribution over all
past policies, such that µk = 1/k

∑k
i=1 d

πi .

2. Corrective Feedback in Q-Learning
When learning with supervised regression onto the true
value function (e.g., in a bandit setting), active data collec-
tion methods will visit precisely those state-action tuples
that have erroneously optimistic values, observe their true
values, and correct the errors, by fitting these true values.
However, ADP methods that use bootstrapped target values
may not be able to correct errors this way, and online data
collection may not reduce the error between the current Q-
function and Q∗. This is because function approximation
error can result in erroneous bootstrap target values at some
state-action tuples. Visiting these tuples more often will
simply cause the function approximator to more accurately
fit these incorrect target values, rather than correcting the
target values themselves.

Didactic example. To build intuition, consider tree-
structured MDP example in Figure 1. We illustrate a poten-
tial run of Q-learning (Alg. 2) with on-policy data collection.
Q-values at different states are updated to match their (poten-
tially incorrect) bootstrap target values under a distribution,
µ(s, a), which, in this case is dictated by the visitation fre-
quency under the current policy. The choice of µ(s, a), does
not affect the resulting Q-function when function approxi-
mation is not used, as long as µ is full-support. However,
with function approximation, updates across state-action
pairs affect each other. Erroneous updates higher up in the
tree, trying to match incorrect target values, may prevent
error correction at leaf nodes if the states have similar rep-
resentations under function approximation (i.e., if they are

partially aliased). States closer to the root have higher fre-
quencies (because there are fewer of them) than the leaves,
exacerbating this problem. This issue can compound: the
resulting erroneous leaf values are again used as targets for
other nodes, which may have higher frequencies, further
preventing the leaves from learning correct values.

If we can instead train with µ(s, a) that puts higher probabil-
ity on nodes with correct target values, we can alleviate this
issue. We would expect that such a method would first fit
the most accurate target values (at the leaves), and only then
update the nodes higher up, as shown in Figure 1 (right).
Our proposed algorithm, DisCor, shows how to construct
such a distribution in Section 3.

Value error in ADP. To more formally quantify, and de-
vise solutions to this issue, we first define our notion of error
correction in ADP in terms of value error:

Definition 2.1. The value error is defined as the error of the
current Q-function, Qk to the optimal Q∗ averaged under
the on-policy marginal, dπk(s, a) : Ek = Edπk [|Qk −Q∗|].
A smooth decrease in value error Ek indicates that effec-
tive error correction in the Q-function. If Ek fluctuates or
increases, the algorithm is making poor learning progress.
When the value error Ek is roughly stagnant at a non-zero
value, this indicates premature convergence.
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To analyze this phenomenon
computationally, we use the
gridworld MDPs from Fu et al.
(2019) and visualize the corre-
lations between policy visita-
tions dπk(s, a) and the value of
Bellman error after the ADP up-

date, i.e. |Qk+1 − B∗Qk|(s, a) (dashed), as well as the cor-
relation between visitations and the difference in value errors
after and before the update, Ek+1(s, a) − Ek(s, a) (solid).
As we see on the left, as expected, Bellman error correlates
negatively with visitation frequency (dashed line), suggest-
ing that visiting a state more often decreases its Bellman
error. However, the change in value error Ek+1 − Ek in gen-
eral does not correlate negatively with visitation. Value error
often increases in states that are visited more frequently, sug-
gesting that corrective feedback is often lacking. We discuss
several consequences (suboptimal/premature convergence,
inability to learn from sparse rewards) of this inability to cor-
rect value errors with on-policy distributions and function
approximation in Appendix E due to lack of space.

In fact, we can construct a family of MDPs generalizing
our didactic tree example where training with on-policy
or replay buffer distributions theoretically requires at least
exponentially many iterations to converge to Q∗, if at all
convergence to Q∗ happens. Proof is in Appendix D.

Theorem 2.1 (Exponential lower bound for on-policy and
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Figure 1. Left: Depiction of possible Q-learning iterations on a tree-structured MDP with on-policy sampling. The trajectory sampled at
each iteration is shown with dotted boundaries. Function approximation results in aliasing (coupling) of the box-shaped and circle-shaped
nodes (i.e., instances of each shape has similar features values). Updating the values at one circle node affects all other circles, likewise
for boxes. Regressing to erroneous targets at one circle node may induce errors at another circle node, even if the other node has a correct
target, simply because the other node is visited less often. Right: If a distribution that puts higher probability on nodes with correct target
values, i.e. which moves from leaves to nodes higher up, is chosen, then, the effects of function approximation aliasing are reduced, and
correct Q-values can be obtained.

replay buffer distributions). There exists a family of MDPs
parameterized by H > 0, with |S| = 2H , |A| = 2 and
state features Φ, such that on-policy or replay-buffer Q-
learning requires Ω

(
γ−H

)
exact Bellman projection steps

for convergence to Q∗, if at all convergence happens. This
happens even with features, Φ that can represent the optimal
Q-function near-perfectly, i.e., ||Q∗ − Φw||∞ ≤ ε.

3. Distributions for Value Error Reduction
We discussed how, with function approximation and on-
policy or replay-buffer training distributions, the value error
Ek may not decrease over the course of training. What if
we instead directly optimize the data distribution at each
iteration so as to minimize value error? To do so, we derive
a functional form for this “optimal” distribution by formu-
lating an optimization problem that directly optimizes the
training distribution pk(s, a) at each iteration k, thus greed-
ily minimizing Ek, that results at the end of that iteration
k. Note that pk(s, a) is now distinct from the on-policy or
buffer data distribution denoted by µ(s, a). We will then
show how to approximately solve for pk(s, a), yielding a
simple practical algorithm in the next section. All proofs
are in Appendix A. We can write the optimal pk(s, a) as the
solution to the following optimization problem:

min
pk

Edπk [|Qk −Q∗|] s.t. (1)

Qk = arg min
Q

Epk
[
(Q− B∗Qk−1)2

]
. (2)

Theorem 3.1. The solution pk(s, a) to the optimization in
Equation 1 satisfies

pk(s, a) ∝ exp (−|Qk −Q∗|(s, a))
|Qk − B∗Qk−1|(s, a)

λ∗
,

(3)
where λ∗ ∈ R+ is the magnitude of Lagrange multiplier for∑
s,a pk(s, a) = 1 in Problem 1.

Intuitively, the optimal pk in Equation 3 assigns higher
probability to state-action tuples with high Bellman error

|Qk −B∗Qk−1|, but only when the resulting Q-value Qk is
close toQ∗. However, this expression contains terms that de-
pend onQ∗ andQk, namely |Qk−Q∗| and |Qk−B∗Qk−1|,
which are observed only after pk is chosen. As we will show
next, we need to estimate these quantities using surrogates,
that only depend upon the past Q-function iterates in order to
use pk in a practical algorithm. Intuitively, these surrogates
exploit the rich structure in Bellman iterations: the Bellman
error at each iteration contributes to the error against Q∗.
We present these approximations below, and then combine
then to derive our proposed algorithm, DisCor.

Surrogate for |Qk − Q∗|. For approximating the error
against Q∗, we show that the cumulative sum of discounted
and propagated Bellman errors over the past iterations of
training, denoted as ∆k and shown in Equation 4, are equiv-
alent to an upper bound on |Qk −Q∗| in Theorem 3.2. We
define ∆k as:

∆k =

k∑
i=1

γk−i

k−1∏
j=i

Pπj

 |Qi − (B∗Qi−1)|. (4)

We can then use ∆k to define an upper bound on the value
error |Qk −Q∗|, as follows:

Theorem 3.2. There exists a k0 ∈ N, such that ∀ k ≥
k0 and ∆k from Equation 4, ∆k satisfies the following
inequality, pointwise, for each s, a, as well as, ∆k → |Qk−
Q∗| as πk → π∗.

∆k(s, a)+

k∑
i=1

γk−iαi ≥ |Qk −Q∗|(s, a),

αi =
2Rmax

1− γ DTV(πi(·|s), π∗(·|s)).

A proof and intermediate steps of simplification can be
found in Appendix B. Using an upper bound of this form
in Equation 3 may downweight more transitions, but will
never upweight a transition that should not be upweighted.
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Estimating |Qk − B∗Qk−1|. The Bellman error multiplier
term |Qk −B∗Qk−1| in Equation 3 is also not known in ad-
vance. A viable approximation is to bound |Qk − B∗Qk−1|
between the minimum and maximum Bellman errors ob-
tained at the previous iteration, c1 = mins,a |Qk−1 −
B∗Qk−2| and c2 = maxs,a |Qk−1 − B∗Qk−2|. This ap-
proximation can be shown to be optimal in a minimax sense,
and can be applied with Equation 3 to replace the Bellman
error multiplier |Qk − B∗Qk−1|, giving us a lower-bound
on pk(s, a) in terms of c1 and c2.

Re-weighting the replay buffer µ. Since it is hard to di-
rectly obtain samples from pk via online interaction, a practi-
cally viable alternative is to use the samples from a standard
replay buffer distribution, denoted µ, but reweight these
samples using importance weights wk = pk(s, a)/µ(s, a).
Instead of directly re-weighting to pk (which suffers from
high variance importance weights), we re-weight sam-
ples from µ to a projection of pk, denoted as qk, that is
still close to µ under the KL-divergence metric, such that
qk = arg minq Eq(s,a)[log pk(s, a)] + τDKL(q||µ), where
τ > 0. The weights wk are given by (App. B):

wk(s, a) ∝ exp

(
−|Qk −Q∗|(s, a)

τ

)
|Qk − B∗Qk−1|(s, a)

λ∗

(5)
Putting it all together. We have noted all practical,
tractable approximations to the expression for optimal pk
(Equation 3), including estimating surrogates forQk andQ∗,
and the usage of importance weights to simply re-weighting
transitions in the replay buffer, rather than altering the ex-
ploration strategy. We now put these together to obtain a
tractable expression for weights in our method, shown in
Equation 6. Due to space limitations, we only provide the
final expression of weights (which can be obtained as a
lower bound on Equation 5) and discuss the derivation in
Appendix C.

wk(s, a) ∝ exp

(
−γ [Pπk−1∆k−1] (s, a)

τ

)
. (6)

Practical Algorithm. Our practical algorithm, DisCor
(Distribution Correction), is shown in Algorithm 1, with the
main differences from standard ADP methods highlighted
in red. DisCor trains a parametric model, ∆φ, to estimate
∆k(s, a) at each state-action pair using the recursion in
Equation 4 via an ADP update (Line 8). ∆φ is required
to compute the weights described in Equation 6. DisCor
also introduces a weighted Q-function backup with weights
wk(s, a) (Line 7). Since DisCor simply adds a change to
the training distribution, this change can be applied to pop-
ular ADP algorithms such as DQN or SAC, as shown in
Algorithm 3, Appendix H.

Intuitively, (Pπk−1∆k−1)(s, a) corresponds to the esti-
mated upper bound on the error of the target values for
the current transition, due to the backup operator Pπk−1 , as
described in Equation 6. This downweights those transitions

for which the bootstrapped target Q-value estimate has a
high estimated error to Q∗, effectively focusing the learning
on samples where the supervision (target value) is estimated
to be accurate, which are precisely the samples that we
expect maximally improve accuracy of the Q function.

Algorithm 1 DisCor (Distribution Correction)
1: Initialize Q-values Qθ(s, a), initial distribution p0(s, a), a

replay buffer µ, and an error model ∆φ(s, a).
2: for step k in {1, . . . , N} do
3: Collect M samples using πk, add them to replay buffer µ,

sample {(si, ai)}Ni=1 ∼ µ
4: Evaluate Qθ(s, a) and ∆φ(s, a) on samples (si, ai).
5: Compute target values for Q and ∆ on samples:

yi = ri + γmaxa′ Qk−1(s′i, a
′)

âi = arg maxaQk−1(s′i, a)

∆̂i = |Qθ(s, a)− yi|+ γ∆k−1(s′i, âi)
6: Compute wk using Equation 6.
7: Minimize Bellman error for Qθ weighted by wk.

θk+1 ← argmin
θ

1
N

∑N
i wk(si, ai)(Qθ(si, ai)− yi)2

8: Minimize ADP error for training φ.
φk+1 ← argmin

φ

1
N

∑N
i=1(∆φ(si, ai)− ∆̂i)

2

9: end for

4. Experimental Evaluation of DisCor
In our experiments, we study the following questions: (1)
Does DisCor lead to a decrease in value error, mitigating
the issues raised in Section 2?, (2) How do approximations
from Section 3 affect the efficacy of DisCor in ensuring
value error reduction? (3) How does DisCor compare to
prior methods, including those that also reweight the data in
various ways?, (4) Can DisCor attain good performance in
challenging settings, such as multi-task RL, robotic manip-
ulation or Atari games? Due to space limitations, we only
describe the key-takeaways from our empirical results, and
refer the reader to experiments in App. F.

We first analyze DisCor and an oracle version of DisCor, that
uses exact Q∗ to compute |Qk −Q∗|, on gridworld MDPs
from (Fu et al., 2019), and find that empirically in Figure 4
that, (a) DisCor (oracle) is somewhat better than DisCor,
both in terms of the ability to reduce value errors, and in
terms of final policy performance, and (b) DisCor (and
oracle) both outperform other sampling schemes, including
on-policy, replay buffer, prioritization based on Bellman
error similar to PER (Schaul et al., 2015).

DisCor can be applied in conjunction with deep RL methods
such as DQN and SAC. As shown in Appendix F, DisCor
outperforms standard unweighted SAC by 1.2x in terms
of success rate on robotic manipulation tasks from Meta-
world (Yu et al., 2019). DisCor attains 50% more than the
success rate of SAC in challenging multi-task learning set-
tings on the MT10 benchmark (Yu et al., 2019). On image-
based Atari games, DisCor outperforms standard DQN, on
all three games tested on: Pong, Breakout and Asterix.
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Discussion. We showed that deep RL algorithms are unable
to correct errors in the value function in scenarios with naı̈ve
online data collection, and we proposed an algorithm, Dis-
Cor, that re-weights the data distribution to induce maximal
error correction. DisCor outperforms unweighted RL on a
wide range of tasks, sometimes by 50%.
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for fitted value iteration. Journal of Machine Learning
Research, 9(May):815–857, 2008.

Theodore J. Perkins and Doina Precup. A convergent form
of approximate policy iteration. NIPS’02, 2002.

Martin Riedmiller. Neural fitted q iteration–first experiences
with a data efficient neural reinforcement learning method.
In European Conference on Machine Learning, pages
317–328. Springer, 2005.

R. Tyrrell Rockafellar. Convex analysis. Princeton Mathe-
matical Series. Princeton University Press, Princeton, N.
J., 1970.

Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. Prioritized experience replay. International Con-
ference on Learning Representations (ICLR), 2015.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan
Pascanu. Ray interference: a source of plateaus in deep
reinforcement learning. CoRR, abs/1904.11455, 2019.
URL http://arxiv.org/abs/1904.11455.

Bruno Scherrer. Approximate policy iteration schemes: A
comparison. In Proceedings of the 31st International
Conference on International Conference on Machine
Learning - Volume 32, ICML’14, page II–1314–II–1322.
JMLR.org, 2014.

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabil-
lon, Boris Lesner, and Matthieu Geist. Approximate
modified policy iteration and its application to the game
of tetris. Journal of Machine Learning Research, 16
(49):1629–1676, 2015. URL http://jmlr.org/
papers/v16/scherrer15a.html.

Guy Shani, David Heckerman, and Ronen I Brafman. An
mdp-based recommender system. Journal of Machine
Learning Research, 6(Sep):1265–1295, 2005.

Richard S. Sutton, David A. McAllester, Satinder P. Singh,
and Yishay Mansour. Policy gradient methods for re-
inforcement learning with function approximation. In
Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller,
editors, Advances in Neural Information Processing Sys-
tems 12, [NIPS Conference, Denver, Colorado, USA,
November 29 - December 4, 1999].

http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1811.06626
http://arxiv.org/abs/1904.11455
http://jmlr.org/papers/v16/scherrer15a.html
http://jmlr.org/papers/v16/scherrer15a.html


DisCor: Corrective Feedback in Reinforcement Learning

Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shal-
abh Bhatnagar, David Silver, Csaba Szepesvári, and Eric
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Appendices
A. Detailed Proof of Theorem 3.1 (Section 3)
In this appendix, we present a detailed proofs for the theoretical derivation of DisCor outlined in Section 3. To get started,
we mention the optimization problem being solved for convenience.

min
pk

Edπk [|Qk −Q∗|]

s.t. Qk = arg min
Q

Epk
[
(Q− B∗Qk−1)2

]
.

(7)

We break down this derivation in steps marked as relevant paragraphs. The first step is to decompose the objective into a
more tractable one via an application of the Fenchel-Young inequality (Rockafellar, 1970).

Step 1: Fenchel-Young Inequality. The optimization objective in Problem 7 is the inner product of dπk−1 and |Qk−Q∗|.
We can decompose this objective by applying the Fenchel-Young inequality (Rockafellar, 1970). For any two vectors,
x, y ∈ Rd, and any convex function f and its Fenchel conjugate f∗, we have that, xT y ≤ f(x) + f∗(y). We therefore have:

Edπk [|Qk −Q∗|] ≤ f (|Qk −Q∗|) + f∗ (dπk) . (8)

Since minimizing an upper bound leads to minimization of the original objective, we can replace the objective in Problem 7
with the upper bound in Equation 8. As we will see below, a convenient choice of f is the soft-min function:

f(x) = − log
(∑

i

e−xi
)
, f∗(y) = H(y). (9)

f∗ in this case is given by the Shannon entropy, which is defined asH(y) = −∑j yj log yj . Plugging this back in problem 7,
we obtain an objective that dictates minimization of the marginal state-action entropy of the policy π.

In order to make this objective even more convenient and tractable, we upper bound the Shannon entropy, H(y) by the
entropy of the uniform distribution over states and actions, H(U). This step ensures that the entropy of the state-action
marginal dπ is not reduced drastically due to the choice of p. We can now minimize this upper bound, since minimizing
an upper bound, leads to a minimization of the original problem, and therefore, we obtain the following new optimization
problem shown in Equation 10 is:

min
pk

− log

(∑
s,a

exp(−|Qk −Q∗|(s, a))

)
s.t. Qk = arg min

Q
Epk

[
(Q− B∗Qk−1)2

]
.

(10)

Another way to interpret this step is to modify the objective in Problem 7 to maximize entropy-augmented VCF: VCF(k) +
H(dπk) as is common in a number of prior works, albeit with entropy over different distributions such as (Hazan et al.,
2019; Haarnoja et al., 2018). This also increases the smoothness of the loss landscape, which is crucial for performance of
RL algorithms (Ahmed et al., 2019).

Step 2: Computing the Lagrangian. In order to solve optimization problem Problem 10, we follow standard procedures
for finding solutions to constrained optimization problems. We first write the Lagrangian for this problem, which includes
additional constraints to ensure that pk is a valid distribution:

L(pk;λ, µ) = − log

(∑
s,a

exp(−|Qk −Q∗|(s, a))

)
+ λ

(∑
s,a

pk(s, a)− 1

)
− µT pk. (11)

with constraints
∑
s,a pk(s, a) = 1 and pk(s, a) ≥ 0 (∀s, a) and their corresponding Lagrange multipliers, λ and µ, respec-

tively, that ensure pk is a valid distribution. An optimal pk is obtained by setting the gradient of the Lagrangian with respect
to pk to 0. This requires computing the gradient of Qk, resulting from Bellman error minimization, i.e. computing the
derivative through the solution of another optimization problem, with respect to the distribution pk. We use the implicit
function theorem (IFT) (Krantz and Parks, 2002) to compute this gradient. We next present an application of IFT in our
scenario.
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Step 3: IFT gradient used in the Lagrangian. We derive an expression for ∂Qk∂pk
which will be used while computing

the gradient of the Lagrangian Equation 11 which involves an application of the implicit function theorem. The IFT gradient
is given by:

∂Qk
∂pk

∣∣∣∣∣
Qk,pk

= − [Diag(pk)]−1 [Diag(Qk − B∗Qk−1)] . (12)

To get started towards showing Equation 12, we consider a non-parametric representation for Qk (a table), so that we can
compute a tractable term without going onto the specific calculations for Jacobian or inverse-Hessian vector products for
different parametric models. In this case, the Hessians in the expression for IFT and hence, the implicit gradient are given
by:

HQ = 2 Diag(pk) HQ,pk = 2 Diag(Qk − B∗Qk−1)

∂Qk
∂pk

= − [HQ]
−1
HQ,pk = −Diag

(
Qk − B∗Qk−1

pk

)
. (13)

provided pk ≥ 0 (which is true, since we operate in a full coverage regime, as there is no exploration bottleneck when all
transitions are provided). This quantity is 0 only if the Bellman residuals Qk − B∗Qk−1 are 0, however, that is rarely the
case, hence this gradient is non-zero, and intuitively quantifies the right relationship: Bellman residual errors Qk − B∗Qk−1

should be higher at state-action pairs with low density pk, indicating a roughly inverse relationship between the two terms –
which is captured by the IFT term.

Step 4: Computing optimal pk. Now that we have the equation for IFT (Equation 12) and an expression for the
Lagrangian (Equation 11), we are ready to compute the optimal pk via an application of the KKT conditions. At an optimal
pk, we have,

∂L(pk;λ, µ)

∂pk
= 0 =⇒ sgn(Qk −Q∗) exp(−|Qk −Q∗|(s, a))∑

s′,a′ exp(−|Qk −Q∗|(s′, a′))
· ∂Qk
∂pk

+ λ− µs,a = 0. (14)

Now, re-arranging Equation 14 and plugging in the expression for ∂Qk
∂pk

from Equation 12 in this Equation to obtain an
expression for pk(s, a), we get:

pk(s, a) ∝ exp (−|Qk −Q∗|(s, a))
|Qk − B∗Qk−1|(s, a)

λ∗
. (15)

Provided, each component of p is positive, i.e. pk(s, a) ≥ 0 for all s, a, the optimal dual variable µ∗s,a = 0, satisfies
µ∗(s, a)pk(s, a) = 0 by KKT-conditions, and µ∗ ≥ 0 (since it is a Lagrange dual variable), thus implying that µ∗ = 0.

Intuitively, the expression in Equation 15 assigns higher probability to state-action tuples with high Bellman error |Qk −
B∗Qk−1|, but only when the post-update Q-value Qk is close to Q∗. Hence we obtain the required theorem.

Summary of the derivation. To summarize, our derivation for the optimal pk consists of the following key steps:

• Use the Fenchel-Young inequality to get a convenient form for the objective.
• Compute the Lagrangian, and use the implicit function theorem to compute gradients of the Q-function Qk with respect

to the distribution pk.
• Compute the expression for optimal pk by setting the Lagrangian gradient to 0.

B. Proofs for Tractable Approximations in Section 3
Here we present the proofs for the arguments behind each of the approximations described in Section 3.

Computing weights wk for re-weighting the buffer distribution, µ. Since sampling directly from pk may not be easy,
we instead choose to re-weight samples transitions drawn from a replay buffer µ, using weights wk to make it as close to
pk. How do we obtain the exact expression for wk(s, a)? One option is to apply importance sampling: choose wk as the
importance ratio, wk(s, a) = pk(s,a)

µ(s,a) , however this suffers from two problems – (1) importance weights tend to exhibit high
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variance, which can be detrimental for stochastic gradient methods; and (2) densities µ(s, a), needed to compute wk are
unknown.

In order to circumvent these problems, we solve a different optimization problem, shown in Problem 16 to find the optimal
surrogate projection distribution qk, which is closest to pk, under the expected likelihood metric, Eqk [log pk], and at the
same time closest to µ as well under the KL-divergence metric, trading off these quantities by a factor τ .

q∗k = arg min
qk

Eqk [log pk] + (τ)DKL(qk||µ) (16)

where λ is a temperature hyperparameter that trades of bias and variance. The solution to the above optimization is shown in
Equation 17, where the second statement follows by using a tractable approximation of setting µ1− 1

τ to be equal to µ, which
can be ignored if τ is large, hence 1− 1

τ ≈ 1. The third statement follows by an application of Equation 15 and the fourth
statement denotes the importance ratio, qk(s,a)

µk(s,a) , as the weights wk.

q∗k(s, a) ∝ (µk) · exp

(
log pk(s, a)

τ

)
∴
q∗k
µk
∝ exp

(−|Qk −Q∗|(s, a)

τ

) |Qk − B∗Qk−1|(s, a)

λ∗

(17)

Our next proof justifies the usage of the estimate ∆k, which is a worst-case upper bound on |Qk −Q∗| in Equation 17.

Proof of Theorem 3.2. We now present a Lemma B.0.1 which proves a recursive inequality for |Qk −Q∗|, then show
that the corresponding recursive estimator upper bounds |Qk −Q∗| pointwise in Lemma B.0.2, and then finally show that
our chosen estimator ∆k is equivalent to this recursive estimator in Theorem B.1 therefore proving Theorem 3.2.

Lemma B.0.1. For any k ∈ N, |Qk −Q∗| satisfies the following recursive inequality, pointwise for each s, a:

|Qk −Q∗| ≤ |Qk − B∗Qk−1|+ γPπk−1 |Qk−1 −Q∗|+
2Rmax

1− γ max
s

DTV(πk−1, π
∗).

Proof. Our proof relies on a worst-case expansion of the quantity |Qk −Q∗|. The proof follows the following steps. The
first few steps follow common expansions/inequalities operated upon in the work on error propagation in Q-learning (Munos,
2005).

|Qk −Q∗|
(a)
= |Qk − B∗Qk−1 + B∗Qk−1 −Q∗|
(b)

≤|Qk − B∗Qk−1|+ |B∗Qk−1 − B∗Q∗|
(c)
= |Qk − B∗Qk−1|+ |R+ γPπk−1Qk−1 −R− γPπ

∗
Q∗|

(d)
= |Qk − B∗Qk−1|+ γ|Pπk−1Qk−1 − Pπk−1Q∗ + Pπk−1Q∗ − Pπ∗Q∗|
(e)

≤|Qk − B∗Qk−1|+ γPπk−1 |Qk−1 −Q∗|+ γ|Pπk−1 − Pπ∗ ||Q∗|
(f)

≤|Qk − B∗Qk−1|+ γPπk−1 |Qk−1 −Q∗|+
2Rmax

1− γ max
s

DTV(πk−1, π
∗)

where (a) follows from adding and subtracting B∗Qk−1, (b) follows from an application of triangle inequality, (c) follows
from the definition of B∗ applied to two different Q-functions, (d) follows from algebraic manipulation, (e) follows from
an application of the triangle inequality, and (f) follows from bounding the maximum difference in transition matrices
|Pπk−1 − P ∗| by maximum total variation divergence between policy πk−1 and π∗, and bounding the maximum possible
value of Q∗ by Rmax

1−γ .

We next show that an estimator that satisfies the recursive equality corresponding to Lemma B.0.1 is a pointwise upper
bound on |Qk −Q∗|.
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Lemma B.0.2. For any k ∈ N, an vector ∆′k satisfying

∆′k := |Qk − B∗Qk−1|+ γPπk−1∆′k−1. (18)

with αk = 2Rmax

1−γ maxs DTV(πk, π
∗), and an initialization ∆′0 := |Q0 −Q∗|, pointwise upper bounds |Qk −Q∗| with an

offset depending on αi, i.e. ∆′k +
∑
i αiγ

k−i ≥ |Qk −Q∗|.

Proof. Let ∆′k be an estimator satisfying Equation 18. In order to show that ∆′k +
∑
i γ

k−iαi ≥ |Qk −Q∗|, we use the
principle of mathematical induction. The base case, k = 0 is satisfied, since ∆′0 + α0 ≥ |Q0 −Q∗|. Now, let us assume
that for a given k = m, ∆′m +

∑
i γ

m−iαi ≥ |Qm −Q∗| pointwise for each (s, a). Now, we need to show that a similar
relation holds for k = m+ 1, and then we can appeal to the principle of mathematical induction to complete the argument.
In order to show this, we note that,

∆′m+1 =|Qm+1 − B∗Qm|+ γPπm∆′m +

m+1∑
i

γm+1−iαi (19)

=|Qm+1 − B∗Qm|+ γPπm(∆′m +

m∑
i=0

γm−iαi) + αm+1 (20)

≥|Qm+1 − B∗Qm|+ γPπm |Qm −Q∗|+ αm (21)
≥|Qm+1 −Q∗| (22)

where (19) follows from the definition of ∆′k, (20) follows by rearranging the recursive sum containing αi, for i ≤ m
alongside ∆m, (21) follows from the inductive hypothesis at k = m, and (22) follows from Lemma B.0.1.

Thus, by using the principle of mathematical induction, we have shown that ∆′k +
∑
i γ

k−iαi ≥ |Qk −Q∗| pointwise for
each s, a, for every k ∈ N.

The final piece in this argument is to show, that the estimator ∆k used by the DisCor algorithm (Algorithm 1), which is
initialized randomly, i.e. not initialized to ∆0 = |Q0 − Q∗|, still satisfies the property from Lemma B.0.2, possibly for
certain k ∈ N.

Therefore, we now show why: ∆k +
∑k
i=1 αiγ

k−i ≥ |Qk −Q∗| point-wise for a sufficiently large k. We restate a slightly
modified version of Theorem 3.2 for convenience.

Theorem B.1 (Formal version of Theorem 3.2). For a sufficiently large k ≥ k0 = log(1−γ)
log γ , the error estimator ∆k

pointwise satisfies:

∆k +

k∑
i=0

γiαk−i ≥ |Qk −Q∗|

where αi’s are scalar constants independent of any state-action pair. (Note that Theorem 3.2 has a typo γi instead of γk−i,
this theorem presents the correct inequality.)

Proof. Main Idea/ Sketch: As shown in Algorithm 1, the estimator ∆k is initialized randomly, without taking into account
|Q0 −Q∗|. Therefore, in this theorem, we want to show that irrespective of the initialization of Q0, a randomly initialized
∆k eventually satisfies the inequality shown in Theorem 3.2. Now, we present the formal proof.

Consider k0 to be the smallest k, such that the following inequality is satisfied:

γk max
Q0,Q∗

|Q0 −Q∗| ≤ 1 (23)

Thus, k0 ≥ log(1−γ)
log γ , assuming Rmax = 1 without loss of generality. For a different reward scaling, the bound can be scaled

appropriately. To see this, we substitute |Q0 −Q∗| as an upper-bound Rmax/(1− γ), and bound Rmax by 1.

Let ∆′k correspond to the upper-bound estimator as derived in Lemma B.0.2. For each k ≥ k0, the contribution of the
initial error |Q0 − Q∗| in |Qk − Q∗| is upper-bounded by 1, and gradually decreases with a rate γ as more backups are
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performed, i.e., as k increases. Thus we can construct another sequence ∆1, ·,∆k, · · · which chooses to ignore |Q0 −Q∗|,
and initializes ∆0 = 0 (or randomly) and the sequences ∆ and ∆′k satisfy:

|∆′k −∆k| < 1,∀k ≥ k0 (24)

Furthermore, the difference |∆′k−∆k| steadily shrinks to 0, with a linear rate γ, so the overall contribution of the initialization
sub-optimality |Q0 −Q∗| drops linearly with a rate of γ. Hence, ∆′ and ∆ converge to the same sequence beyond a fixed
k = k0. Since ∆′k is computed using the RHS of Lemma B.0.1, it is guaranteed to be an upper bound on |Qk −Q∗|:∣∣∣∣∣

(
∆k +

k∑
i=1

γk−iαi

)
−
(

∆′k +
∑
i=1

γk−iαi

)∣∣∣∣∣ ≤ 1. (25)

Since, ∆′k +
∑
i γ

k−iαi ≥ |Qk −Q∗|, we get ∀ k ≥ k0, using 25, that

∆k +

k∑
i=1

γk−iαi ≥ |Qk −Q∗| − γk−k0 . (26)

Hence, ∆k +
∑k
i=1 γ

k−iαi ≥ |Qk −Q∗| for large k.

A note on the value of k0. For a discounting of γ = 0.95, we get that k0 ≈ 59 and for γ = 0.99, k0 ≈ 460. In practical
instances, an RL algorithm takes a minimum of about ≥ 1M gradient steps, so this value of k0 is easy achieved. Even in the
gridworld experiments presented in Section F.1, γ = 0.95, hence, the effects of initialization stayed significant only until
about 59 iterations during training, out of a total of 300 or 500 performed, which is a small enough percentage.

Summary of Proof for Theorem 3.2. ∆k in DisCor is given by the quantity ∆k = |Qk − B∗Qk−1|+ γPπk−1∆k−1, is
an upper bound for the error |Qk − Q∗|, and we can safely initialize the parametric function ∆φ using standard neural
network initialization, since the value of initial error will matter only infinitesimally after a large enough k.

As k →∞, the following is true:

lim
k→∞

∣∣∣|∆k − |Qk −Q∗|
∣∣∣ ≤ lim

k→∞

k∑
i=1

γk−iαi (27)

= lim
k→∞

k∑
i=1

γk−iDTV(πi, π
∗) (28)

Also, note that if πk is improving, i.e. πk → π∗, then, we have that DTV(πk, π
∗)→ 0, and since limit of a sum is equal to

the sum of the limit, and γ < 1, therefore, the final inequality in Equation 28 tends to 0 as k →∞.

C. Tractable Approximations for a Practical Algorithm
We now discuss how to put together all tractable approximations discussed in Section 3 to go from the optimal distribution
pk (or wk) to a tractable expression for weights, that downweight the states with high estimated target value error.

We have noted all practical approximations to the expression for optimal pk (Equation 3), including estimating surrogates
for Qk and Q∗, and the usage of importance weights to develop a method that can achieve the benefits of the optimal
distribution, simply by re-weighting transitions in the replay buffer, rather than altering the exploration strategy. We also
discussed a technique to reduce the variance of weights used for this reweighting. We now put these techniques together to
obtain the final, practically tractable expression for the weights used for our practical approach.

We note that the term |Qk −Q∗|, appearing inside the exponent in the expression for wk in Equation 5 can be approximated
by the tractable upper bound ∆k. However, computing ∆k requires the quantity |Qk − B∗Qk−1| which also is unknown
when wk is being chosen. Combining the upper bound on |Qk − B∗Qk−1| ≤ c2, Theorem 3.2 and Equation 4, we obtain
the following bound:

|Qk −Q∗| ≤ γPπk−1∆k−1 + c2 +
∑
i

γiαi (29)
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Using this bound in the expression for wk, along with the lower bound, |Qk − B∗Qk−1| ≥ c1, we obtain the following
lower bound on weights wk:

wk ∝ exp

(−c2 − γ [Pπk−1∆k−1] (s, a)

τ

)
c1
λ∗

(30)

Finally, we note that using a worst-case lower bound for wk (Equation 30) will down-weight some additional transitions
which in reality lead to low error accumulation, but this scheme will never up-weight a transition with high error, thus
providing for a “conservative” distribution. A less conservative expression for getting these weights is a subject of future
work. Simplifying the constants c1, c2 and λ∗, the final expression for the practical choice of wk is:

wk(s, a) ∝ exp

(
−γ [Pπk−1∆k−1] (s, a)

τ

)
. (31)

D. Proof From Section 2
In this section, we provide the omitted proof from Section 2 of this paper. Before going into the proofs, we first describe
notation and prove some lemmas that will be useful later in the proofs.

We also describe the underlying ADP algorithm we use as an ideal algorithm for the proofs below.

Algorithm 2 Generic ADP algorithm
1: Initialize Q-values Q0.
2: for step t in {1, . . . , N} do
3: Collect trajectories using πt
4: Choose distribution Dt for projection.
5: Qt+1 ←

∏
Dt
B∗Qt∏

Dt
B∗ = arg minQ EDt [(Q(s, a)− B∗Qt−1(s, a))2]

6: end for

Assumptions. The assumptions used in the proofs are as follows:

• Q-function is linearly represented, i.e. given a set of features, φ(s, a) ∈ Rd for each state and action, concisely
represented as the matrix Φ ∈ R|S||A|×d, Q-learning aims to learn a d-dimensional feature vector w, such that
Q(s, a) = wTφ(s, a). Linear function approximation is not a limiting factor in this case as we will argue in
Assumption D.1, for problems with sufficiently large |S| and |A|.

D.1. Suboptimal Convergence of On-policy Q-learning

We first discuss a prior result from Farias and Roy (2000) that describes how Q-learning can converge sub-optimally when
performed with on-policy distributions, thus justifying our empirical observation of suboptimal convergence with on-policy
distributions.

Theorem D.1 ((Farias and Roy, 2000)). Projected Bellman optimality operator under the on-policy distribution H =∏
Dπ
B∗ with a Boltzmann policy, π ∝ exp(Q/τ), where 0 < τ always has one or more fixed points.

Proof. This statement was proven to be true in (Farias and Roy, 2000), where it was shown the projection operatorH has
the same fixed points as another operator, Fα given by:

Fα(x) := x+ αΦTDπ (B∗Φx− Φx) (32)

where α ∈ (0, 1) is a constant. They showed that the operator Fα is a contraction for small-enough α and used a compact set
argument to generalize it to other positive values of α. We refer the reader to (Farias and Roy, 2000) for further reference.

They then showed a 2-state MDP example (Example 6.1, (Farias and Roy, 2000)) such that the Bellman operatorH has 2
fixed points, thereby showing the existence of one or more fixed points for the on-policy Bellman backup operator.

This provides some theoretical evidence behind our observation in Figure 3(left), where we observed that learning to a
suboptimal policy and the error plateaued, and this result provides some theoretical justification behind this empirical
observation.
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D.2. Proof of Theorem 2.1

We now provide an existence proof which highlights the difference in the speeds of learning accurate Q-values from online
or on-policy and replay buffer distributions versus a scheme like DisCor. We first state an assumption (Assumption D.1) on
the linear features parameterization used for the Q-function. This assumption ensures that the optimal Q-function exists in
the function class (i.e. linear function class) used to model the Q-function. This assumption has also been used in a number
of recent works including (Du et al., 2020). Analogous to (Du et al., 2020), in our proof, we show that this assumption is
indeed satisfied for features lying in a space that is logarithmic in the size of the state-space. For this theorem, we present an
episodic example, and operate in a finite horizon setting with discounting γ and H denotes the horizon length. An episode
terminates deterministically as soon as the run reaches a terminal node – in our case a leaf node of the tree MDP, i.e. a node
at level H − 1 – as we will see next.

Assumption D.1. There exists δ ≥ 0, and w ∈ Rd, such that for any (s, a) ∈ S × A, the optimal Q-function satisfies:
|Q∗(s, a)− wTφ(s, a)| ≤ δ.

We first prove an intermediate property of Φ satisfying the above assumption that will be crucial for the lower bound
argument for on-policy distributions.

Corollary D.1.1. There exists a set of features Φ ∈ R2H×O(H2/ε2) satisfying assumption D.1, such that the following holds:
||I2H − ΦΦT ||∞ ≤ ε.

Proof. This proof builds on the existence argument presented in (Du et al., 2020). Using the ε-rank property of the identity
matrix, one can show that there exists a feature set Φ ∈ R2H×O(H/ε2) such that ||I2H − ΦΦT ||∞ ≤ ε. Thus, we can choose
any such Φ, for a sufficiently low threshold ε. In order to assign features Φ to a state, we can simply perform an enumeration
of nodes in the tree via a standard graph search procedure such as depth first search and assign a node (s, a) a feature vector
φ(s, a). To begin with, let’s show how we can satisfy assumption D.1 by choosing a different weight vector wh for each level
h, such that we obtain |Qh(s, a)− wTh φ(s, a)| ≤ ε. Since for each level h exactly one state satisfies Q∗(sj , aj) = γH−j+1,
so we can just let wj = γH−j+1φ(sj , aj) and thus we are able to satisfy Assumption D.1. This is the extent of the argument
used in (Du et al., 2020).

Now we generalize this argument to find a single w ∈ Rd, unlike different weights wh for different levels h. In order to do
this, we create a new Φ′, of size Φ′ ∈ R2H×O(H2/ε2) (note H2 versus H dimensions for Φ′ and Φ) given any Φ satisfying
the argument in the above paragraph, such that

Φ′(s, a) =

 0, ..., 0︸ ︷︷ ︸
h×dim(φ(s,a))

, Φ(s, a)︸ ︷︷ ︸
dim(φ(s,a))

, 0, ..., 0

 (33)

Essentially, we pad Φ with zeros, such that for (s, a) belonging to a level h, Φ′ is equal to Φ in the h−th, dim(φ(s, a))-sized
block.

A choice of a single w ∈ Rdim(Φ′(s,a)) for Φ′ is given by simply concatenating w1, · · · , wh found earlier for Φ.

w = [w1, w2, · · · , wH ] (34)

It is easy to see that wTΦ′ satisfies assumption D.1. A fact that will be used in the proof for Theorem D.2, is that this
construction of Φ′ also satisfies: ||I2H − Φ′Φ′T ||∞ ≤ ε.

We now restate the theorem from Section 2 and provide a proof below.

Theorem D.2 (Exponential lower bound for on-policy distributions). There exists a family of MDPs parameterized by
H > 0, with |S| = 2H , |A| = 2 and a set of features satisfying Assumption D.1, such that on-policy sampling distribution,
i.e. Dk = dπk , requires Ω

(
γ−H

)
exact fixed-point iteration steps in the generic algorithm (Algorithm 2) for convergence, if

at all, the algorithm converges to an ε−accurate Q-function.

Proof of Theorem D.2. Tree Construction. Consider the family of tree MDPs like the one shown in Figure 2. Both the
transition function T and the reward function r are deterministic, and there are two actions at each state: a1 and a2. There
are H level of states, thereby forming a full binary tree of depth H . Executing action a1 transitions the state to its left child
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r(s, a) = 0

r(s) = 0

r(s) = 0 r(s) = 0

r(s) = 0

r(s, a1) = 1 r(s) = 0

Figure 2. Example element of the tree family of MDPs used to prove the lower bound in Theorem D.2. Here, the depth of the tree H = 2.
r(s) = 0 implies that executing any action a1 or a2, a reward of 0 is obtained as state s. (s∗, a∗) is given by state marked r(s, a1) = 1.

int he tree and executing action a2 transitions the state to its right child. There are 2h states in level h. Among the 2H−1

states in level H − 1, there is one state, s∗, such that action a∗ at this state yields a reward of r(s∗, a∗) = 1. For other states
of the MDP, r(s, a) = 0. This is a typical example of a sparse reward problem, generally used for studying exploration (Du
et al., 2020), however, we re-iterate that in this case, we are primarily interested in the number of iterations needed to learn,
and thereby assume that the algorithm is given infinite access to the MDP, and all transitions are observed, and the algorithm
just picks a distribution Dk, in this case, the on-policy state-action marginal for performing backups.

Main Argument. Now, we are equipped with a family of the described tree MDPs and a corresponding set of features Φ
which can represent an ε−accurate Q-function. Our aim is to show that on-policy Q-learning takes steps, exponential in the
horizon for solving this task.

For any stochastic policy π(a|s), and p̄ defined as p̄ = mins∈S,a∈A π(a|s), 0 < p̄ < 0.5, the marginal state-action
distribution satisfies:

dπ(s∗, a∗) ≤ γH · (1− p̄)H+1 (35)

Since dπ is a discounted state-action marginal distribution, another property that it satisfies is that:

c ≤ ||dπ||2 ≤
1

1− γ 2H (36)

where c is a constant c > 0. The above is true, since, there are 2H states in this MDP, and the maximum values of any entry
in dπ can be 1

1−γ since, 1− γ is the least eigenvalue of (I − γPπ) for any policy π, since ||Pπ||2 = 1.

Now, under an on-policy sampling scheme and a linear representation of the Q-function as assumed, the updates on the
weights for each iteration of Algorithm 2 are given by (Dπk represents Diag(dπk)):

wk+1 =
(
ΦTDπkΦ

)−1
ΦTDπk (r + γPπkΦwk) (37)

Now, ||Dπkr|| ≤ γH(1− p̄)H+1||φ(s∗, a∗)|| from the property Equation 35. Hence, the maximum 2-norm of the updated
wk+1 is given by:

||wk+1||2 ≤ ||
(
ΦTDπkΦ

)−1
ΦTDπkR||2 + γ||

(
ΦTDπkΦ

)−1
ΦTDπkP

πkΦwk||2

≤ γH(1− p̄)H+1

||Dπk ||F · (1− ε) · 2H−1
+ γ||wk||2

≤ γH(1− p̄)H+1c

(1− ε) · 2H−1
+ ||wk||2

= (γ)
H · c · (1)

(1− ε) · 2H−1
+ ||wk||2.

(38)

where the first inequality follows by an application of the triangle inequality, the second inequality follows by using the
minimum value of the Frobenius norm of the matrix Φ to be (1 − ε) · 2H−1 (using the ε−rank lemma used to satisfy
Assumption D.1) in the denominator of the first term, bounding ||Dπkr|| by Equation 35, and finally bounding the second
term by γ||wk||2, since the maximum eigenvalue of the entire matrix in front of wk is ≤ 1, as it is a projection ma-
trix with a discount γ valued scalar multiplier. The third inequality follows from lower boundingDπk by c using Equation 36.
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The optimal w∗ is given by the fixed point of the Bellman optimality operator, and in this case satisfies the following via
Cauchy-Schwartz inequality,

(I − γP ∗)Φw∗ = r

=⇒ ||Φ||F · ||w∗||2 ≥ ||(I − γP ∗)−1r|| ≥ 1

1 + γ
||r||2

=⇒ (1 + ε) · 2H−1 · ||w∗||2 ≥
1

1 + γ

=⇒ ||w∗||2 ≥
1

1 + γ
· 2−H+1 · (1 + ε)−1

(39)

Thus, in order for wk to be equal to w∗, it must satisfy the above condition (Equation 39). If we choose an initialization
w0 = 0 (or a vector sufficiently close to 0), we can compute the minimum number of steps it will take for on-policy ADP to
converge in this setting by using 38 and 39:

k ≥ (1 + γ)−1 · 2−H+1 · (1 + ε)−1

(γ)
H · (1− p̄)H · (c)

(1−ε)·2H−1

=⇒ k ≈ Ω
(
γ−H

) (40)

for sufficiently small ε. Hence, the bound follows.

A note on the bound. Since typically RL problems usually assume discount factors γ close to 1, one might wonder the
relevance is this bound in practice. We show via an example that this is indeed relevant. In particular, we compute the value
of this bound for commonly used γ, p̄ and H . For a discount γ = 0.99, and a minimum probability of p̄ = 0.01 (as it is
common to use entropy bonuses that induce a minimum probability of taking each action), this bound is of the order of

(γ · (1− p̄))H ≈ 109 for H = 1000 (41)

for commonly used horizon lengths of 1000 (example, on the gym benchmarks).

Corollary D.2.1 (Extension to replay buffers). There exists a family of MDPs parameterized by H > 0, with |S| = 2H ,
|A| = 2 and a set of features Φ satisfying assumption D.1, such that ADP with replay buffer distribution takes Ω(γ−H)
many steps of exact fixed-point iteration for convergence of ADP, if at all convergence happens to an ε−accurate Q-function.

Proof of Corollary D.2.1. For replay buffers, we can prove a similar statement as previously. The steps in this proof follow
exactly the steps in the proof for the previous theorem.

With replay buffers, the distribution for the projection at iteration k is given by:

dk(s, a) =
1

k

k∑
i=1

dπk(s, a) (42)

Therefore, we can bound the probability of observing any state-action pair similar to Equation 35 as:

dk(s∗, a∗) ≤ 1

k

k∑
i=1

γH · (1− p̄)H+1 (43)

with p̄ as defined previously. Note that this inequality is the same as the previous proof, and doesn’t change. We next bound
the 2-norm of the state-visitation distribution, in this case, the state-distribution in the buffer.

c ≤ ||dk||2 ≤
1

1− γ · 2
H (44)

where c > 0. The two main inequalities used are thus the same as the previous proof. Now, we can simply follow the
previous proof to prove the result.



DisCor: Corrective Feedback in Reinforcement Learning

Practical Implications. In this example, both on-policy and replay buffer Q-learning suffer from the problem of exponen-
tially many samples need to reach the optimal Q-function. Even in our experiments in Section 2, we find that on-policy
distributions tend to reduce errors very slowly, at a rate that is very small. The above bound extends this result to replay
buffers as well.

In our next result, however, we show that an optimal choice of distribution, including DisCor, can avoid the large iteration
complexity in this family of MDPs. Specifically, using the errors against Q∗, i.e. |Qk −Q∗| can help provide a signal to
improve the Q-function such that this optimal distribution / DisCor will take only poly(H) many iterations for convergence.

Theorem D.3 (Optimal distributions / DisCor). In the tree MDP family considered in Theorem 2.1, with linear function
approximation for the Q-function, and with Assumption D.1 for the features Φ, DisCor takes poly(H) many exact iterations
for ε−accurate convergence to the optimal Q-function.

Proof. We finally show that the DisCor algorithm, which prioritizes states based on the error in target values, will take
poly(H) many steps for convergence. Assume that Q-values are initialized randomly, for example via a normal random
variable with standard deviation σ, i.e., Q0(s, a) ∼ N (0, σ2), however, σ is very small, but is more than 0 (σ > 0) (this
proof is still comparable to the proof for on-policy distributions, since Q-values can also be initialized very close to 0 even
in that case, and the proof of Theorem D.2 still remains valid.).

Now we reason about a run of DisCor in this case.

Iteration 1. In the first iteration, among all nodes in the MDP, the leaf nodes (depth H-1) have 0 error at the corresponding
target values, since an episode terminates once a rollout reaches a leaf node. Hence, the algorithm will assign equal mass to
all leaf node states, and exactly update the Q-values for nodes in this level (upto ε-accuracy).

Iteration 2. In the second iteration, the leaf nodes at level H − 1 have accurate Q-values, therefore, the algorithm will pick
nodes at the level H − 2, for which the target values, i.e. Q-values for nodes at level H − 1, have 0 error. The algorithm
will update Q-values at these nodes at level H − 2, while ensuring that the incurred error at the nodes at level H − 1 isn’t
beyond ε. Since, the optimal value function Q∗ can be represented upto ε−accuracy, we can satisfy this criterion.

Iteration k. In iteration k, the algorithm updates Q-values for nodes at level H − k, while also ensuring Q-values for
all nodes at a level higher than H − k are estimated within the range of ε−allowable error. This is feasible since, Q∗ is
expressible with ε−accuracy within the linear function class chosen.

This iteration process continues, and progress level by level, from the leaves (level H − 1) to the root (level 0). At each
iteration Q-values for all states at the same level, and below are learned together. Since learning progresses in a “one level
at-a-time” fashion, with guaranteed correct target values (i.e. target values are equal to the optimal Q-function Q∗) for any
update that the algorithm performs, it would take at most poly(H) many iterations (for example, multiple passes through
the depth of the tree) for ε-accurate convergence to the optimal Q-function.

E. Consequences of the Inability to Correct Value Errors
In Figure 3, we plot value error Ek over the course of Q-learning with on-policy and replay buffer distributions. The plots
show prolonged periods where Ek is increasing or fluctuating. When this happens, the policy has poor performance, with
returns that are unstable or stagnating (Fig. 3). To study the effects of function approximation and distributions on this issue,
we can control for both of these factors. When a uniform distribution Unif(s, a) is used instead of the on-policy distribution,
as shown in Fig. 3 (red), or when using a tabular representation without function approximation, but with the on-policy
distribution, as shown in with Fig. 3 (brown), we see that Ek decreases smoothly, suggesting that the combination of function
approximation and naı̈ve distributions can result in challenges in value error reduction.
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Figure 3. Value error (Ek) and policy performance (normalized return) for Left: sub-optimal convergence with on-policy distributions,
Right: instabilities in learning progress with replay buffers. Note that an oracle re-weighting to a uniform data distribution or complete
removal of function approximation, gives rise to decreasing Ek curve and better policy performance.
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Figure 6. Evaluation success of DisCor, unweighted SAC and PER on six MetaWorld tasks. From left to right: pull stick, push with wall,
push stick, turn dial, hammer and insert peg side. Note that DisCor achieves better final success rates or learns faster on most of the tasks
and is the only method that learns on one task.

F. Expanded Experimental Section
F.1. Analysis of DisCor on Tabular Environments

Figure 4. Value Error Ek/ return for two
runs of DisCor (blue) and DisCor (oracle)
(red) in exact (top) and sampled (bottom)
settings. Note (i) DisCor achieves similar
performance as DisCor (oracle), (ii) Ek
generally decreases with both methods.

We first use the tabular domains from Section 2, described in detail in Appendix I.1,
to analyze error correction induced by DisCor and evaluate the effect of the
approximations used in our method, such as the upper bound estimator ∆k, both
when the algorithm is provided with Fig. 10). all transitions in the replay buffer and
simply chooses a weighting on them (no sampling error) and when the algorithm
collects its own transitions via exploration. In both settings, in Figure 4, value
error Ek decreases smoothly with DisCor. An oracle version of the algorithm
(DisCor (oracle); Equation 5), which uses the true error |Qk −Q∗| in place of ∆k,
is somewhat better than DisCor (Fig. 5, red vs blue), but DisCor still outperforms
on-policy and replay buffer schemes (green and pink), which often fail to reduce
Ek as shown in Section 2. While DisCor (oracle) consistently performs better
than DisCor, as we would expect, the approximate DisCor algorithm still attains
better performance than naı̈ve uniform weighting and prioritization similar to PER.
This shows that the principle behind DisCor is effective when applied exactly,
and that even the approximation that we use in practice improves performance.

F.2. Continuous Control Experiments

Figure 5. Performance of DisCor, DisCor
(oracle) and other distributions averaged
across tabular domains with and without sam-
pling error.. DisCor is generally comparable
to DisCor (oracle), and both of them generally
outperform all other distributions.

We next perform a comparative evaluation of DisCor on several continuous
control tasks, using six robotic manipulation tasks from the Meta-World suite
(pull stick, hammer, insert peg side, push stick, push with wall and turn
dial) (these are shown in Figure 13 in Appendix G). These domains were
chosen because they are challenging for state-of-the-art RL methods, such as
SAC (Haarnoja et al., 2018). We applied DisCor to these tasks by modifying the
weighting of samples in SAC. DisCor does not alter any hyperparameter from
SAC, and requires minimal tuning. There is only one additional temperature
hyperparameter, which is also automatically chosen. More details are presented
in App. H.2.

We compare DisCor to standard SAC without weighting, as well as prioritized
experience replay (PER) (Schaul et al., 2015), which uses weights based on
the last Bellman error. The results in Figure 6 show that DisCor outperforms
prior methods on these tasks. DisCor learns substantially faster on most of the
tasks.

We also performed comparisons on the more conventional gym benchmarks, where we see a small but consistent benefit
from DisCor reweighting. Since prior methods, such as SAC already solves these tasks easily, and have been tuned well for
them, the room for improvement is very small. We include these results in Appendix I.3 for completeness. We also evaluate
on a stochastic reward variant of gym benchmarks, where we observe an improvement trend. However, on tasks that have
not been tuned as extensively or exhibit challenging properties, such as multi-task learning or complex manipulation tasks,
current RL methods can perform poorly.
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F.3. Multi-Task Reinforcement Learning
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Figure 7. Performance of DisCor (blue) and unweighted SAC (green)
on the MT10 benchmark. We observe that: (1) DisCor outperforms
unweighted SAC by a factor of 1.5 in terms success rate; (2) DisCor
achieves a non-trivial return on 7/10 tasks after 500k environment
steps, as compared to 3/10 for unweighted SAC.

Another challenging setting for current RL methods is
the multi-task RL setting. This is known to be difficult,
to the point that often times learning completely separate
policies for each of the tasks is actually faster, and results
in better performance, than learning the tasks together (Yu
et al., 2019; Schaul et al., 2019). We evaluate on the
MT10 MetaWorld benchmark (Yu et al., 2019), which
consists of ten robotic manipulation tasks to be learned
jointly. We follow the protocol from (Yu et al., 2019),
and append task ID to the state. As shown in Figure 7(a),
DisCor outperforms SAC by a large margin, achieving
50% higher success rates compared to SAC, and a high
overall return (Fig 16). Figure 7(b) shows that DisCor
makes progress on 7/10 tasks, as compared to 3/10 for
SAC. We further evaluate DisCor and SAC on the more challenging MT50 benchmark (Yu et al., 2019), shown in Figure 17,
and observe a similar benefit as compared to MT10, where the baseline SAC algorithms tends to plateau at a suboptimal
success rate for about 4M environment steps, whereas DisCor keeps learning, and achieves asymptotic performance faster.

F.4. Arcade Learning Environment
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Figure 8. DQN vs DisCor on Atari. Note that DisCor generally improves
learning speed and asymptotic performance.

Our final experiments were aimed at testing the
efficacy of DisCor on stochastic, discrete-action,
image-observation environments. To this end, we
evaluated DisCor on three commonly reported
tasks from the Atari suite – Pong, Breakout and
Asterix. We compare to the baseline DQN (Mnih
et al., 2015), all our implementations are built off
of Dopamine (Castro et al., 2018), and use the
evaluation protocol with sticky actions (Machado
et al., 2018). We build DisCor on top of DQN
by simply replacing the standard replay buffer sampling scheme in DQN with the DisCor weighted update. We show in
Figure 8 that DisCor usually outperforms unweighted DQN in learning speed and performance.

G. Related Work
G.1. Summary of Related Work

Prior work has pointed out a number of issues arising when dynamic programming is used with function approximation.
(Munos, 2005; Munos and Szepesvári, 2008; Farahmand et al., 2010; Scherrer et al., 2015; Lesner and Scherrer, 2013;
Scherrer, 2014) focused on analysing error induced in Bellman projections, under the assumption of an abstract error model.
Convergent backups (Sutton et al., 2009b;a; Maei et al., 2009) were developed. However, divergence is rarely observed
to be an issue with deep Q-learning methods (Fu et al., 2019; van Hasselt et al., 2018). In contrast to these works, which
mostly focus on convergence of the Bellman backup, we focus on the interaction between the ADP update and the data
distribution µ. Prior work on Q-learning and stochastic approximation analyzes time-varying µ, but either without function
approximation (Watkins and Dayan, 1992; Tsitsiklis, 1994; Devraj and Meyn, 2017), or when fully online (Tsitsiklis and
Roy, 1997), unlike our setting, that uses replay buffer data.

While generalization effects of deep neural nets with ADP updates have been studied (Achiam et al., 2019; Fu et al., 2019;
Liu et al., 2018; Kumar et al., 2019), often under standard NTK (Jacot et al., 2018) assumptions (Achiam et al., 2019), the
high-level idea in these prior works has been to suppress any coupling effects of the function approximator, effectively
obtaining tabular behavior. In contrast, DisCor solves an optimization problem for the distribution pk that maximally
reduces value error, and does not explicitly suppress coupling effects, as these can be important for generalization in high
dimensions. (Schaul et al., 2019) studies the effect of data distribution on multi-objective policy gradient methods and
reports a pathological interaction between the data distribution and optimization. (Farias and Roy, 2000) shows the existence
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of suboptimal fixed points with on-policy TD learning as we observed empirically in Figure 3 (left). DisCor re-weights
the transition in the buffer based on an estimate of their error to the true optimal value function. This scheme resembles
learning with noisy labels via “abstention” from training on labels that are likely to be inaccurate (Thulasidasan et al.,
2019). Prioritized sampling has been used previously in ADP methods to instead prioritize transitions with higher Bellman
error (Schaul et al., 2015; Hessel et al., 2018; Hou et al., 2017; Horgan et al., 2018). We show in Section 4 that this approach
is less effective than DisCor experimentally. Recent work (Du et al., 2019) has attempted to use a distribution-checking
oracle to control the amount of exploration performed. DisCor, instead, re-weights the data distribution without requiring
any oracles.

G.2. Expanded Related Work

Error propagation in ADP. A number of prior works have analysed error propagation in ADP methods. Most work in
this area has been devoted to analysing how errors in Bellman error minimization propagate through the learning process
of the ADP algorithm, typically focusing on methods such as fitted Q-iteration (FQI) (Riedmiller, 2005) or approximate
policy iteration (Perkins and Precup, 2002). Prior works in this area assume an abstract error model, and analyze how
errors propagate. Typically these prior works only limitedly explore reasons for error propagation or present methods to
curb error propagation. (Munos, 2003) analyze error propagation in approximate policy iteration methods using quadratic
norms. (Munos, 2005) analyze the propagation of error across iterations of approximate value iteration (AVI) for Lp-norm
p = (1, 2). (Munos and Szepesvári, 2008) provide finite sample guarantees of AVI using error propagation analysis. Similar
ideas have been used to provide error bounds for a number of different methods – (Farahmand et al., 2010; Scherrer et al.,
2015; Lesner and Scherrer, 2013; Scherrer, 2014) and many more. In this work, we show that ADP algorithms suffer from
an absence of corrective feedback, which arises because the data distribution collected by an agent is insufficient to ensure
that error propagation is eventually corrected for. We further propose an approach, DisCor, which can be used in conjunction
with modern deep RL methods.

Offline / Batch Reinforcement Learning. Our work bears some similarity to the recent body of literature on batch, or
offline reinforcement learning (Kumar et al., 2019; Fujimoto et al., 2019; Wu et al., 2019), where the goal is to learn an
effective policy, using access to only a finite, off-policy dataset collected previously. All of these works augment ADP
methods with additional constraints on the policy to be close to the data-collection policy, under some closeness metric.
While (Kumar et al., 2019) show that this choice can be motivated from the perspective of error propagation, we note that
there are clear differences between our work and such prior works in offline RL. First, the problem statement of offline RL
requires learning from completely offline experience, however, our method learns online, via on-policy interaction and a
replay buffer. While error propagation due to unobserved state-action pairs (Kumar et al., 2019; Fujimoto et al., 2019) is the
primary problem behind incorrect Q-functions in offline RL, in this paper, firstly, we show that such error accumulation also
happens in online reinforcement learning, which results in a lack of corrective feedback, and secondly, the primary reason
behind such error propagation is an interaction between data distribution and function approximation.

Generalization effects in deep Q-learning. There are a number of recent works that theoretically analyze and empirically
demonstrate that certain design decisions for neural net architectures used for Q-learning, or ADP objectives can prove to be
significant in deep Q-learning. For instance, (Liu et al., 2018) point out that sparse representations may help Q-learning
algorithms, which links back to prior literature on state-aliasing and destructive interference. (Achiam et al., 2019) uses
an objective inspired from the neural tangent kernel (NTK) (Jacot et al., 2018) to “cancel” generalization effects in the Q-
function induced across state-action pairs to mimic tabular and online Q-learning. Our approach, DisCor, can be interpreted
as only indirectly affecting generalization via the target Q-values for state-action pairs that will be used as bootstrap targets
for the Bellman backup, which are expected to be accurate with DisCor, and this can aid generalization, similar to how
generalization can be achieved via abstention from training on noisy labels in supervised learning (Thulasidasan et al.,
2019).

H. Experimental and Implementation Details
In this section, we provide experimental details, such as the DisCor algorithm in practice (Section H.1), and the hyperparam-
eter choices (Section H.2).
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Algorithm 3 DisCor: Deep RL Version
1: Initialize online Q-networkQθ(s, a), target Q-network,Qθ̄(s, a), error network ∆φ(s, a), target error network ∆φ̄, initial distribution
p0(s, a), a replay buffer β and a policy πψ(a|s), number of gradient steps G, target network update rate η, initial temperature for
computing weights wk, τ0.

2: for step k in {1, . . . , } do
3: Collect M samples using πψ(a|s), add them to replay buffer β, sample {(si, ai)}Ni=1 ∼ β
4: Evaluate Qθ(s, a) and ∆φ(s, a) on samples (si, ai).
5: Compute target values for Q and ∆ on samples:

yi = ri + γEa′∼πψ(a′|s′)[Qθ̄(s
′
i, a
′)]

∆̂i = |Qθ(s, a)− yi|+ γEâi∼π(ai|s′)[∆φ̄(s′i, âi)]

6: Compute wk using Equation 6 with temperature τk
7: Take G gradient steps on the Bellman error for training Qθ weighted by wk.

θ ← θ − α∇θ
1

N

N∑
i=1

wk(si, ai) · (Qθ(si, ai)− yi)2

8: Tale G gradient steps to minimize unweighted (regular) Bellman error for training φ.

φ← φ− α∇φ
1

N

N∑
i=1

(∆θ(si, ai)− ∆̂i)
2

9: Update the policy πψ if it is explicitly modeled.

ψ ← ψ + α∇ψEs∼β,a∼πψ(a|s)[Qθ(s, a)]

10: Update target networks using soft updates (SAC), hard updates (DQN)

θ̄ ← (1− η)θ̄ + ηθ

φ̄← (1− η)φ̄+ ηφ

11: Update temperature hyperparameter for DisCor:

τk+1 ← (1− η)τk + η BATCH-MEAN(∆φ(si, ai))

12: end for

H.1. DisCor in Practice

In this section, we provide details on the experimental setup and present the pseudo-code for the practical instantiation of
our algorithm, DisCor.

The pseudocode for the practical algorithm is provided in Algorithm 3. Like any other ADP algorithm, such as DQN or
SAC, our algorithm maintains a pair of Q-functions – the online Q-network Qθ and a target network Qθ̄. For continuous
control domains, we use the clipped double Q-learning trick (Fujimoto et al., 2018), which is also referred to as the “twin-Q”
trick, and it further parametrizes another pair of online and target Q-functions, and uses the minimum Q-value for backup
computation. In addition to Q-functions, in a continuous control domain, we parametrize a separate policy network πψ
similar to SAC. In a discrete action domain, the policy is just given by a greedy maximization of the online Q-network.

DisCor further maintains a model for accumulating errors ∆φ parameterized by φ and the corresponding target error network
∆φ̄. In the setting with two Q-functions, DisCor models two networks, one for modelling error in each Q-function. At every
step, a few (depending upon the algorithm) gradient steps are performed on Q and ∆, and π – if it is explicitly modeled,
for instance in continuous control domains. This is a modification of generalized ADP Algorithm 2 and the corresponding
DisCor version (Algorithm 1), customized to modern deep RL methods.
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H.2. Experimental Hyperparameter Choices

We finally specify the hyperparameters we used for our experiments. These are as follows:

• Temperature τ : DisCor mainly introduces one hyperparameter, the temperature τ used to compute the weights wk in
Equation 6. As shown in Line 11 of Algorithm 3, DisCor maintains a moving average of the temperatures and uses
this average to perform the weighting. This removes the requirement for tuning the temperature values at all. For
initialization, we chose τ0 = 10.0 for all our experiments, irrespective of the domain or task.
In our preliminary experiments, we tried experimenting with a fixed temperature, which did not yield good results, and
suffered from either too large importance weights, giving rise to high variance in the learning curve or wasn’t effective
beyond SAC at all.

• Architecture for ∆φ: For the design of the error network, ∆φ, we utilize a network with 1 extra hidden layer than the
corresponding Q-network. For instance, in metaworld domains, the standard Q-network used was [256, 256, 256] in
size, and thus we used an error network of size: [256, 256, 256, 256], and for MT10 tasks we used [160, 160, 160, 160,
160, 160] sized Q-networks (Yu et al., 2020) and 1-extra layer error networks ∆φ.
• Target net updates: We performed target net updates for ∆φ̄ in the same manner as standard Q-functions, in all domains.

For instance, in MetaWorld, we update the target network ∆φ̄ with a soft update rate of 0.005 at each environment step,
as is standard with SAC (Tuomas Haarnoja and Levine, 2018), whereas in DQN (Mnih et al., 2015), we use hard target
resets.

• Learning rates for ∆φ: These were chosen to be the same as the corresponding learning rate for the Q-function, which
is 3e−4 for SAC and 0.0025 for DQN. We also searched over the space of three learning rates: [3e−4, 1e−4, 5e−4],
and did not find a huge difference across these. The only somewhat visible difference suggested that a learning rate of
3e− 4 or 5e− 4 worked better than 1e-4..
• Official Implementation repositories used for our work:

1. Soft-Actor-Critic (Haarnoja et al., 2018): https://github.com/rail-berkeley/softlearning/
2. Dopamine (Castro et al., 2018): Offical DQN implementation https://github.com/google/dopamine,

and the baseline DQN numbers were reported from the logs available at: https://github.com/google/
dopamine/tree/master/baselines

3. Gridworlds (Fu et al., 2019): https://github.com/justinjfu/diagnosing_qlearning
• We perform self-normalized importance sampling across a batch, instead of regular importance sampling, since that

gives rise to more stable training, and suffers less from the curse of variance in importance sampling.
• Seeds: In all our experiments, we implemented our methods on top of the official repositories, ran each experiment

for 4 randomly chosen seeds from the interval, [10, 10000], in Meta-World, OpenAI gym and tabular environments.
For DQNs on atari, we were only able to run 3 seeds for each game for our method, however, we found similar
performances, and less variance across seeds, as is evident from the variance bands in the corresponding results. For
baseline DQN, we just used the log files provided by the dopamine repository for our results.

I. Additional Experiments
We now present some additional experimental results which we could not present de to shortage of space in Section 4.

I.1. Tabular Environment Analysis

Environment Setup. We used the suite of tabular environments from from Fu et al. (2019), which provides a suite of 8
tabular environments and several different plug-and-play options for choices of input feature space, reward functions, etc. a
suite of algorithms based on fitted Q-iteration (Riedmiller, 2005), which forms the basis of modern deep RL algorithms
that use ADP. We evaluated performance on different variants of the (16, 16) gridworld provided, with different reward
styles (sparse, dense), different observation functions (one-hot, random features, locally smooth observations), and different
amounts of entropy coefficients (0.01, 0.1). We evaluated on five different kinds of environments: grid16randomobs,
grid16onehot, grid16smoothobs, grid16smoothsparse, grid16randomsparse – which cover a wide variety of combinations of
feature and reward types. We also evaluated on CliffWalk, Sparsegraph and MountainCar MDPs in Figures 9 and 10.

Sampling Modes. We evaluated in two modes – (1) exact mode, in the absence of sampling error, where an algorithm is
provided with all transitions in the MDP and simply chooses a weighting over the states rather than sampling transitions
from the environment, and (2) sampled mode, which is the conventional RL paradigm, where the algorithm performs online

https://github.com/rail-berkeley/softlearning/
https://github.com/google/dopamine
https://github.com/google/dopamine/tree/master/baselines
https://github.com/google/dopamine/tree/master/baselines
https://github.com/justinjfu/diagnosing_qlearning
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Figure 9. Performance of different methods: DisCor (blue), DisCor (oracle) (red), Replay buffer Q-learning (green, on-policy (grey) and
prioritized updates (orange), across different environments measured in terms of smooth normalized returns in the exact setting with all
transitions. Note that DisCor and DisCor (oracle) generally tend to perform better.

Figure 10. Performance of different methods: DisCor (blue), DisCor (oracle) (red), Replay buffer Q-learning (green) and prioritized
updates (orange). across different environments measured in terms of smooth normalized return with sampled transitions. Note that
DisCor and DisCor (oracle) generally tend to perform better.

data collection to collect its own data.

Setup for Figure 3. For Figure 3, we used the grid16randomobs MDP (which is a 16 × 16 gridworld with randomly
initialized vectors as observations), with an entropy penalty of 0.01 to the policy.

Results. We provide some individual environment performance curves showing the smoothed normalized return achieved
at the end of 300 steps of training in both exact (Figure 9) and sampled (Figure 10) settings. We also present some
individual-environment learning curves for these environments comparing different methods in both exact (Figure 11) and
sampled (Figure 12).

I.2. MetaWorld Tasks

In this section, we first provide a pictorial description of the six hard tasks we tested on from meta-world, where SAC
usually does not perform very well. Figure 13 shows these tasks. We provide the trends for average return achieved during
evaluation (not the success rate as shown in Figure 6 in Section 4) for each of the six tasks. Note that DisCor clearly
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Figure 11. Learning curves for different algorithms in the exact setting. Note that DisCor (blue) and DisCor (oracle) (red) are generally
the best algorithms in these settings. Replay Buffers (green) help over on-policy (pink) distributions. Prioritizing transitions based on high
Bellman error (orange) is performant in some cases, but hurts in the other cases – it is especially slow in cases with sparse rewards, note
the speed of learning on grid16randomsparse and grid16smoothsparse (right of the vertical line) environments.
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Figure 12. Learning curves for different algorithms in the sampled setting. Note that DisCor and DisCor (oralce) anre generally the best
algorithms in these settings. Replay Buffers (green) help over on-policy (gray) distributions, but may the algorithm may still fail to reach
optimal return. Prioritizing for high Bellman error (PER) may fail to learn in sparse-reward tasks as is evident from the curves for sparse
reward environments (right of the vertical line).

outperforms both the baseline SAC and the prior method PER in all six cases, achieving nearly 50% more than the returns
achieved by SAC.

Figure 13. Visual description of the six MetaWorld tasks used in our experiments in Section 4. Figures taken from (Yu et al., 2019).

I.3. OpenAI Gym Benchmarks

Here we present an evaluation on the standard OpenAI continuous control gym benchmark environments. Modern ADP
algorithms such as SAC can already solve these tasks easily, without any issues, since these algorithms have been tuned on
these tasks. A comparison of the three algorithms DisCor, SAC and PER, on three of these benchmark tasks is shown in
Figure 15 (top). We note that in this case, all the algorithms are roughly comparable to each other. For instance, DisCor
performs better than SAC and PER on Walker2d, however, is outperformed by SAC on Ant.

Stochastic reward signals. That said, we also performed an experiment to verify the impact of stochasticity, such as noise
in the reward signal, on the DisCor algorithm as compared to other baseline algorithms like SAC and PER. Analogous the
diagnostic tabular experiments on low signal-to-noise ratio environments, such as those with sparse reward, we would expect
a baseline ADP method to be impacted more due to an absence of corrective feedback in tasks with stochastic reward noise,
since a noisy reward effectively reduces the signal-to-noise ratio. We would also expect a method that ensures corrective
feedback to perform better.

In order to test this hypothesis, we created stochastic reward tasks out of the OpenAI gym benchmarks. We modified the
reward function r(s, a) in these gym tasks to be equal to:

r′(s, a) = r(s, a) + z, z ∼ N (0, 1) (45)

and the agent is only provided these noisy rewards during training. However, we only report the deterministic ground-truth
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Figure 14. Evaluation average return achieved by DisCor (blue), SAC (green) and PER (orange) on six Metaworld benchmarks. From left
to right: pull stick, push with wall, push with stick, turn dial, hammer and insert peg side tasks. Note that DisCor clearly achieves better
returns or learns faster in most of the tasks.

reward during evaluation. We present the results in Figure 15 (bottom). Observe that in this scenario, DisCor emerges as
the best performing algorithm on these tasks, and outperforms other baselines SAC and PER both in terms of asymptotic
performance (example, HalfCheetah) and sample efficiency (example, Ant).

We also compare DisCor to AFM (Fu et al., 2019), a prior method similar to prioritized experience replay on the MuJoCo
gym benchmarks. We find that DisCor clearly outperforms AFM in these scenarios. We present these results in Figure 15
(bottom) where the top row presents results in the case of regular gym benchmarks, and the bottom row presents results in
the case of gym benchmarks with stochastic reward noise.
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Figure 15. Performance of DisCor, SAC, PER and AFM on continuous control gym benchmarks (top row) and gym benchmarks with
stochastic reward noise (bottom row). Observe that DisCor learns slightly faster and performs better than SAC and PER on these stochastic
problems and that DisCor clearly out-performs AFM in both scenarios, on all three benchmarks tested on.

I.4. MT10 Multi-Task Experiments

In this section, we present the trend of returns, as a learning curve and as a comparative histogram (at 1M environment steps
of training) for the multi-task MT10 benchmark, extending the results shown in Section F.3, Figure 7. These plots are shown
in Figure 16. Observe that DisCor achieves more than 30% of the return of SAC, and obtains an individually higher value
of return on more tasks.
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Figure 16. Performance of DisCor and SAC on the MT10 benchmark. Returns for DisCor are higher than SAC by around 30%; (2)
DisCor achieves a non-trivial return on 7/10 tasks after 1000k steps, as compared to 3/10 for unweighted SAC, similar to the trend at 500k
steps shown in Figure 7.

I.5. MT50 Multi-Task Experiments

We further evaluated the performance of DisCor on the multi-task MT50 benchmark (Yu et al., 2019). This is an extremely
challenging benchmark where the task is to learn a single policy that can solve 50 tasks together, with the same evaluation
protocol as previously used in the MT10 experiments (Section F.3 and Appendix I.4). We present the results (average task
return and average success rate) in Figures 17. Note that while SAC tends to saturate/plateau in between 4M - 8M steps,
accounting for corrective feedback via the DisCor algorithm makes the algorithm continue learning in that scenario too.
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Game n-step DQN DisCor n-step DisCor
(n = 3) (Regular) (n = 3)

Pong 17 17 19
Breakout 37 175 47

Table 1. Average Performance of DQN + 3-step returns, DisCor and Discor + 3-step returns on Pong and Breakout at 60M steps into
training, rounded off to the nearest integer. Note that DisCor clearly outperforms DQN with multi-step returns. We also find that adding
n-step returns to DisCor can hurt, for instance, on Breakout, where the same hurts with DQN as well (for comparison, see Figure 8 in
the main paper), however, we still observe that DisCor, when applied with multi-step returns performs better than DQN with multi-step
returns as well, indicating the benefits of DisCor even when methods such as multi-step returns are used.
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Figure 17. Performance of DisCor and SAC on the MT50 benchmark. Note that, DisCor clearly keeps learning unlike SAC which tends to
plateau for about 3M steps in the middle (the stretch between 4M and 7M steps on the x-axis, where SAC exhibits a small gradient in the
learning progress, whereas DisCor continuously keeps learning).

I.6. DQN with multi-step returns

N-step returns with DQN are hypothesized to stabilize learning since updates to the Q-function now depends on reward
values spanning multiple steps, and the coefficient of the bootstrapped Q-value is γT , which is exponentially smaller than γ
used conventionally in Bellman backups, implying that the error accumulation process due to incorrect targets is reduced.
Thus, we perform a comparison of DisCor and DQN with n-step backups, where n was chosen to be 3, n = 3, in accordance
with commonly used multi-step return settings for Atari games. We present the average return obtained by DisCor and DQN
(+n-step), with sticky actions, in Table 1. We clearly observe that DisCor outperforms DQN with 3-step returns in all three
games evaluated on. We also observe that n-step returns applied with DisCor also outperform n-step returns applied with
DQN, indicating the benefits of using DisCor even when other techniques, such as n-step returns are used.

I.7. Code for the Method

The code is shown in Figure 18. It is a simplified version of the code from our implementation of DisCor on top of the
official SAC repository (Tuomas Haarnoja and Levine, 2018).
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1 def _init_critic_update_with_dist(self):
2 """Update critic with distribution weighting,
3 and update \delta_\phi using recursive update. """
4 next_actions = self._policy.actions([self._next_observations_ph])
5

6 ## Compute errors at next state, and an action from the policy
7 qf_pred_errs = self._error_fns([self._next_observations_ph, next_actions])
8

9 ## error_model_tau_ph: moving mean of the error values over batches
10 err_logits = -tf.stop_gradient(
11 self._discount * qf_pred_errs / self._error_model_tau_ph)
12

13 Q_target = tf.stop_gradient(self._get_Q_target())
14 Q_values = self._Q([self._observations_ph, self._actions_ph])
15

16 ## Compute importance sampled loss, also perform self-normalized sampling
17 loss, weights = importance_sampled_loss(
18 labels=Q_target, predictions=Q_values,
19 weights=err_logits, weight_options=’self_normalized’)
20

21 ## Train Q-function
22 Q_training_ops = tf.contrib.layers.optimize_loss(loss, learning_rate=self._Q_lr,
23 optimizer=self._Q_optimizer, variables=self._Q.trainable_variables)
24 training_ops.update({’Q’: tf.group(Q_training_ops)})
25

26 ## Training the error function
27 err_values = self._error_fns([self._observations_ph, self._actions_ph])
28

29 ## Mean Bellman error used to compute target values for error
30 bellman_errors = tf.abs(Q_values - Q_target)
31 err_targets = tf.stop_gradient(self._get_error_target(bellman_errors))
32

33 ## This is used to update the moving mean, self._error_model_tau_ph
34 self._mean_error_values = tf.reduce_mean(err_values)
35

36 ## Simple mean squared error loss for \delta_\phi
37 err_losses = tf.losses.mean_squared_error(
38 labels=err_targets, predictions=err_values, weights=0.5)
39

40 ## Update error function: \delta_\phi
41 err_training_ops = tf.contrib.layers.optimize_loss(err_losses,
42 learning_rate=self._dist_lr,
43 optimizer=self._err_optimizer, variables=self._error_fns.trainable_variables)
44 training_ops.update({’Error’: tf.group(err_training_ops)})
45

Figure 18. Code for training the error function ∆φ, and modified training for the Q-function Q(s, a) using ∆φ to get weights w(s, a)
for training. Code written in convention with regular Tensorflow guidelines, in the same style as the official SAC implementation (Tuo-
mas Haarnoja and Levine, 2018).


