
Exact (Then Approximate) Dynamic Programming
for Deep Reinforcement Learning

Henrik Marklund∗ 1 Suraj Nair∗ 1 Chelsea Finn 1

Abstract
Model-free reinforcement learning methods such
as Q-learning and actor-critic methods have
shown considerable success on a variety of prob-
lems. However, when combined with function ap-
proximation, these methods are notoriously brittle,
and often face instability during training. At the
heart of these methods is dynamic programming,
where a value function is trained by bootstrap-
ping values off itself with a temporal difference
loss. As a result, these bootstrapped values may
be incorrect, non-stationary, or even divergent,
during a substantial portion of training. Such
training conditions pose a unique challenge for
deep networks, which have been shown to require
more data and generalize poorly when trained
with noisy labels. Motivated by these challenges,
we propose a simple technique to stabilize deep
Q learning by decoupling dynamic programming
and function approximation. To do so, we quan-
tize the agent’s experience, run value iteration on
the discrete graph, train a neural network policy
via supervised learning on the tabular targets, and
finally finetune the policy with deep Q learning.
We observe that, across a range of challenging
image based offline RL tasks, this approach con-
sistently outperforms prior approaches such as
double DQN and BCQ, which often diverge or
fail completely, while generalizing more effec-
tively than directly applying the tabular policy.

1 Introduction
Deep reinforcement learning is a powerful framework for
automatically acquiring complex behavior, achieving strong
performance in many games (Mnih et al., 2013b), and show-
ing promising performance in domains such as robotics

*Equal contribution 1Stanford University. Correspondence to:
Henrik Marklund <marklund@stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

(Levine et al., 2016). One particularly effective and pop-
ular class of approaches for deep reinforcement learning
are value-based methods, which have favorable properties
such as sample efficiency and the ability to leverage off-
policy data. These value-based methods most often utilize
dynamic programming, where a value function is trained
by bootstrapping values off itself with a temporal differ-
ence loss. Despite their promise, methods that combine
dynamic programming with function approximation (i.e. ap-
proximate dynamic programming (ADP)) are known to be
unstable and sensitive to hyper-parameters.

The primary contribution of this work is a deep reinforce-
ment learning algorithm, exact then approximate dynamic
programming (ETA-DP), that decouples bootstrapping and
function approximation by sequentially applying discretiza-
tion, value iteration, supervised learning, and then deep Q
learning with function approximation. Unlike ADP meth-
ods, the first three steps of this approach are guaranteed
to converge, though the quality of the converged solution
depends on the quality of the quantization relative to the
underlying MDP, as well as the loss landscape of the super-
vised optimization problem. We empirically find that ETA-
DP exhibits strong performance on vision-based offline RL
tasks, avoiding instabilities experienced by double DQN
(Van Hasselt et al., 2016) and BCQ (Fujimoto et al., 2019b),
while generalizing more effectively than directly applying
the tabular solution.

2 Exact (Then Approximate) Dynamic
Programming (ETA-DP)

To address the stability challenges associated with approx-
imate dynamic programming, we propose exact (then ap-
proximate) dynamic programming (ETA-DP) as a technique
for deep reinforcement learning. Our key insight is that by
separating the bootstrapping and function approximation
stages, we can maintain stability, while still leveraging the
generalization power of deep neural networks.

Our method has four steps shown in Algorithm 1. First,
we begin by quantizing the agents experience into discrete
states, giving us a corresponding discrete state and next state
for each transition in D. Second, we run value iteration
on these discretized transitions until convergence. Third,
we use these tabular values to label every transition in the

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

original datasetD with an estimated Q value, which we then
regress to directly using supervised learning with a function
approximator. Fourth, we use a combination of supervised
regression and DDQN to fine-tune the learned Q-function.
Note that the first two steps corresponds exactly to prior
approaches that use state quantization for reinforcement
learning (Asada et al., 1996; 1998; Santamaria et al., 1997;
Stone and Sutton, 2001; Corneil et al., 2018; Krose and
Van Dam, 1995), while the latter two steps allow for further
generalization. Further, the fourth step in particular can help
overcome inaccuracies caused by the approximations made
in the first two steps. We now go over each step in detail.

Algorithm 1 ETA-DP(D, pmin)

1: Initialize N = |D|, Batch size B, Iterations I
2: /* Learn quantization function from data */
3: φ← QUANTIZE(D)
4: for n = 1, 2, ..., N do
5: (st, at, st+1, rt)n = Dn
6: xt, xt+1 = φ(st), φ(st+1)
7: /* Store discrete states with transitions */
8: D̄n ← (st, at, st+1, rt, xt, xt+1)n
9: end for

10: /* Run value iteration on quantized dataset */
11: Q̂(x, a)← VALUEITERATION(D̄)
12: for (I iterations) & (p : 1→ pmin) do
13: (st, at, st+1, rt, xt, xt+1)1:B ∼ D̄
14: if U(0, 1) < p then
15: /* Regress Tabular Values */
16: L = (Qθ(st, at)− Q̂(xt, at))

2

17: else
18: /* DDQN Update */
19: y = rt + γQθ̄(st+1,maxaQθ(st+1, a))
20: L = (Qθ(st, at)− y)2

21: end if
22: Update θ using∇θL
23: end for

2.1 Quantizing States
Concretely, we begin with a dataset of N transitions
(st, at, st+1, rt)i ∼ D collected by some behavior pol-
icy. To quantize states, we learn a function φ : S → X ,
where |X | <= K. Once learned, this quantizing function
xt = φ(st) can be used to map each state in the dataset of
transitions (st, at, st+1, rt)→ (st, at, st+1, rt, xt, xt+1) to
augment the original transitions with the discretized states
(Algorithm 1, L3:8).

There are a number of choices for the function φ ranging
from simple techniques like state thresholding and binning,
to learning based approaches like K-means and tile cod-
ing, as well as deep parametric approaches like VQ-VAE
(van den Oord et al., 2017) and Deep Cluster (Caron et al.,
2018), and more sophisticated approaches that leverage dy-
namics (Corneil et al., 2018). In this work, we aim for
simplicity in this step, and find K-means clustering in S to
be effective, even for high-dimensional visual inputs. In

Section 3.2, we also find the overall method to be robust to
the choice of K, even across one order of magnitude.

We find that Batch K-means (Sculley, 2010) is able to scale
to high-dimensional inputs and reasonably large datasets
(50000+ images). Furthermore, more sophisticated cluster-
ing algorithms or generative models, such as DeepCluster or
VQ-VAE, scale well and can be applied to larger datasets.

2.2 Value Iteration on Discrete Graph
Given the new discretized replay buffer
[(st, at, st+1, rt, xt, xt+1)1, ...] we can now run value
iteration on the discrete graph. Concretely, we iterate
through transitions in the dataset, setting the Q value
of a (state, action) pair to the average target value until
converged, as described in Algorithm 2 (In supplement).

Note that since the dataset is fixed, we are effectively doing
value iteration in the discrete graph with the transition prob-
abilities estimated with the empirical transition probabilities.
As a result, we can directly compute the average value over
next states, and are guaranteed to converge (Chapter 4.4 of
(Sutton and Barto, 2018)) without the need for a step size
parameter as in tabular Q learning. Once value iteration has
been run to convergence, we now have state action values
Q̂(φ(st), a) for all state-action pairs in the dataset, which
we refer to as "tabular values". One benefit of using value
iteration here is that it only considers actions seen in the
dataset, and thus does not suffer from overestimation of out
of distribution actions, a common problem in offline RL
(Levine et al., 2020).

2.3 Supervised Regression of Tabular Values
Given the new replay buffer augmented with tabu-
lar values derived from value iteration on the dis-
crete graph, we simply train our parametric Q func-
tion Qθ(st, at) to match the corresponding Q̂(φ(st), at)
via supervised learning. Concretely, instead of optimiz-
ing the Bellman loss as in default DQN, we now mini-
mize E(st,at,rt,st+1,xt,xt+1)∼D̄[(Qθ(st, at)− Q̂(xt, at))

2] ,
where xt = φ(st) (Algorithm , L15) andQθ is parametrized
as a deep neural network. Since SGD is guaranteed to con-
verge to a stationary point1 (Ghadimi and Lan, 2013), these
first 3 steps of ETA-DP (quantization, value iteration, re-
gression) are guaranteed to converge.

2.4 Approximate Dynamic Programming Finetuning
In Section 3.1, we will find that the first three steps already
produce stable and performant learning on complex prob-
lems. However, to reduce our dependence on the accuracy
of the initial quantization, we add a fourth and final step,
which corresponds to fine-tuning with bootstrapped targets.
In particular, we slowly incorporate bootstrapped target
values (standard double DQN Bellman loss (Algorithm 1,
L18:19)) into the training process, mixed with supervised

1Under the necessary smoothness/noise/step-size assumptions

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

Figure 1: Experiment 1 (maze navigation from images). Compares the success rate of ETA-DP (-FT), DDQN, and Exact-DP on
the visual navigation task over the course of offline training. In sparse reward settings (middle/right) DDQN is highly unstable, while
ETA-DP (-FT) consistently achieves higher success rates. In the hardest setting (right), by using an expressive neural network ETA-DP
(-FT) is able to outperform Exact-DP. Results are averaged over 5 seeds, each using a randomly generated dataset of 1000 episodes.

targets defined previously. In practice, the targets are the
tabular values with probability p and are the DDQN tar-
gets with probability 1 − p, where we anneal p from 1 to
pmin = 0.1 over the course of training.

3 Experiments
In our experiments we investigate two central questions.
(1) By simply running supervised learning on the tabular
values derived from the discrete graph, does ETA-DP pro-
vide increased stability and efficiency compared to deep Q
learning? (2) By combining ETA-DP with deep Q learning
finetuning, are we able to get "the best of both worlds",
that is, good asymptotic performance while maintaining
the stability and efficiency of discrete value iteration, even
in settings where state quantization may be difficult? To
answer these questions, we compare ETA-DP (with and
without DDQN finetuning) to existing ADP algorithms in
the offline setting, across both low dimensional and image
based tasks.

Experimental Domains. Our experiments study problems
with continuous states and discrete actions. Specifically, we
test on the CartPole environment from (Brockman et al.,
2016), a top-down visual maze navigation task with random-
ized walls from (Nair and Finn, 2020), and visual, egocen-
tric navigation to a target object from (Chevalier-Boisvert,
2018). All experiments are done in the offline RL setting.
That is, all methods are trained using a batch of offline data
collected from a behavior policy πb (which may be partially-
learned or random), and are evaluated in the environment
without collecting any new data for learning. Environment
details (including visuals and qualitative results) for all en-
vironments and the corresponding behavior policies can be
found in the supplement.

Comparisons. Our experiments compare the following
methods. ETA-DP: Our method as presented in Section 2,
which quantizes the agent’s experience, runs value iteration,

does supervised regression of the tabular targets, and fine-
tunes with DDQN. ETA-DP (-FT): Identical to ETA-DP,
but does not perform DDQN finetuning, only performing
supervised regression on the tabular target values. Exact-
DP: Identical to ETA-DP, but without either the supervised
learning or finetuning steps. Given a new state, we map it
directly to its discrete state, and use the tabular Q-function
for action selection, effectively performing a "nearest neigh-
bors" lookup. Note that this approach is not learning a
parametrized Q-function, and as a result cannot generalize
beyond the (discrete state, action) pairs it has seen. In the
rare event that the nearest neighbor has no action values, the
agent takes a random action. DDQN: We compare to double
deep Q learning (Van Hasselt et al. (2016)) (DDQN). DDQN
uses the max over the current Q function when computing
target network values, reducing overestimation. BCQ: We
also compare to batch constrained deep Q Learning (BCQ)
(Fujimoto et al., 2019b), an offline RL algorithm which con-
strains the learned policy to be similar to what it saw in the
data. All hyper-parameters and architecture details for all
methods including our own can be found in the supplement.
All experiments show task performance (and standard error
shading) every 2000 training iterations, run over either 3/5
seeds, where each seed affects both the dataset and training.
3.1 Experiment 1: Does ETA-DP (Without

Finetuning) Outperform Deep Q Learning?
In this experiment, we explore if supervised learning on
tabular values achieves improved stability and performance
compared to deep Q learning. To do so we compare ETA-
DP without finetuning (ETA-DP (-FT)) to DDQN with
varying target frequencies (TF) (how frequently the target
weights are updated), as well as the ablation (Exact-DP)
which directly applies the learned discrete Q function for
control. DDQN with large TF also closely resembles Neural
Fitted Q Iteration (Riedmiller, 2005). Cartpole. Results on
the Carpole env can be found in the supplement.

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

Figure 2: Experiment 2 (maze navigation from images). Com-
pares ETA-DP to ETA-DP (-FT) as well as DDQN and BCQ in
the visual maze navigation task.

Image Based Maze Navigation. In Figure 1 we present a
comparison between ETA-DP (-FT), Double DQN (DDQN),
and Exact-DP on a visual maze navigation task with either
dense/sparse reward or fixed/randomized walls. We run
varying numbers of clusters for ETA-DP (-FT) and Exact-
DP, and varying target update frequencies for DDQN.

First, we observe that in the easier dense reward setting (left)
DDQN is stable, and as a result matches the performance of
ETA-DP (-FT). However in the challenging sparse reward
setting (middle/right) DDQN often fails completely, while
ETA-DP (-FT) and Exact-DP solve the task. Second, we
observe that for ETA-DP (-FT) that large numbers of clusters
tend to perform better, as too few clusters leads to over-
discretizing the state space, i.e. grouping different images
into the same cluster, which naturally degrades performance.
Finally, we see that for fewer clusters [200, 2000], using
Exact-DP generally performs the same as ETA-DP (-FT),
as most state action tuples will have directly been seen in
the dataset. However Exact-DP’s performance improvement
degrades with more clusters, while ETA-DP (-FT) is able to
generalize well to unseen states, and as a result achieves the
best performance on the most challenging setting (right).

These experiments provide evidence that supervised learn-
ing on tabular targets inferred by value iteration on the
discretized graph can produce much more stable learning,
and in some cases, achieve better performance, despite min-
imal hyper parameter tuning. We observe empirically that
the source of DDQN instability is overestimation (plot in
supplement), which is not an issue for ETA-DP.

3.2 Experiment 2: Does Combining Regression of
Tabular Values and Deep Q Learning Finetuning
Provide Both Asymptotic Performance and
Stability?

In this experiment we investigate question (2), using our
full ETA-DP method (with all 4 steps). To do so we com-
pare our full ETA-DP method with DDQN (target freqency

Figure 3: Experiment 2 (egocentric visual navigation). Suc-
cess rates on the challenging egocentric navigation tasks. ETA-DP
achieves strong performance, while Exact-DP, DDQN and BCQ
fail to learn at all.

2000) and BCQ as points of comparison, and in some cases
include ETA-DP (-FT) or Exact-DP as an ablation. In all
experiments, ETA-DP uses identical hyper-parameters to
the best performing DDQN.

Image Based Maze Navigation. In Figure 2 we compare
ETA-DP, ETA-DP (-FT), DDQN, and BCQ on the most chal-
lenging of the top-down maze navigation tasks, namely with
sparse rewards and randomized wall configurations. We
make two key observations. First, we find that by finetuning
with DDQN, ETA-DP is able to significantly exceed the
performance of both ETA-DP (-FT) as well as DDQN and
BCQ. Second, we observe that although the performance
of ETA-DP (-FT) is quite different depending on the choice
of K, this gap is closed when doing DDQN finetuning. In
other words, even with a suboptimal K and thus a subopti-
mal quantization, combining tabular values with DDQN can
yield substantial performance benefits.

Egocentric Visual Navigation. Lastly, we study the perfor-
mance of ETA-DP on two challenging egocentric navigation
tasks, built on the MiniWorld (Chevalier-Boisvert, 2018) en-
vironment (Figure 3). This environment is especially chal-
lenging for quantization, as the observations are first-person
images. In the first task, the agent must navigate from a
random initialization on one side of the room to a blue block
on the other side of the room. The second task is identical to
the first, except there is also a wall in the middle of the room
with a doorway through which the agent must navigate to
reach the target block. All agents are trained over 3 datasets
of 300 episodes each, all collected by a random policy.

Again we observe that ETA-DP significantly outperforms
the comparisons, succeeding most of the time, while Exact-
DP fails, and DDQN and BCQ struggle to learn at all. These
settings are especially challenging for DDQN and BCQ,
since the offline dataset collected is by a random behavior
policy. Random data is known to cause challenges for offline
RL (Fu et al., 2020), such as overestimation on unseen
actions. This overestimation issue is mitigated by ETA-DP
by training on targets found from value iteration, since value
iteration only considers actions seen in the data.

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

References
D. Abel, D. E. Hershkowitz, and M. L. Littman. Near

optimal behavior via approximate state abstraction. In
ICML, 2016.

J. Achiam, E. Knight, and P. Abbeel. Towards characterizing
divergence in deep q-learning. ArXiv, abs/1903.08894,
2019.

M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Pur-
posive behavior acquisition for a real robot by vision-
based reinforcement learning. Machine Learning 23,
279–303, 1996.

M. Asada, S. Noda, and K. Hosoda. Action-based sensor
space segmentation for soccer robot learning. Applied
Artificial Intelligence, 12:149–164, 03 1998. doi: 10.
1080/088395198117802.

K. Asadi, D. J. Abel, and M. L. Littman. Learning state
abstractions for transfer in continuous control. ArXiv,
abs/2002.05518, 2020.

L. Baird. Residual algorithms: Reinforcement learning with
function approximation. In Machine Learning Proceed-
ings 1995, pages 30–37. Elsevier, 1995.

M. G. Bellemare, W. Dabney, and R. Munos. A distribu-
tional perspective on reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 449–458. JMLR. org, 2017.

O. Biza, R. W. Platt, J.-W. van de Meent, and L. L. Wong.
Learning discrete state abstractions with deep variational
inference. ArXiv, abs/2003.04300, 2020.

M. Brittain, J. Betram, X. Yang, and P. Wei. Prioritized
sequence experience replay. https://arxiv.org/
pdf/1905.12726.pdf„ 2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym,
2016.

M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep
clustering for unsupervised learning of visual features. In
ECCV, 2018.

M. Chevalier-Boisvert. gym-miniworld environment for
openai gym. https://github.com/maximecb/
gym-miniworld, 2018.

D. S. Corneil, W. Gerstner, and J. Brea. Efficient model-
based deep reinforcement learning with variational state
tabulation. In ICML, 2018.

J. del R. Millán, D. Posenato, and E. Dedieu. Continuous-
action q-learning, year = 2002, journal = Machine Learn-
ing,.

S.-H. Dong, B. V. Roy, and Z. Zhou. Provably efficient
reinforcement learning with aggregated states. ArXiv,
abs/1912.06366, 2019.

J. Fu, A. Kumar, M. Soh, and S. Levine. Diagnosing bottle-
necks in deep q-learning algorithms. In ICML, 2019.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine.
D4rl: Datasets for deep data-driven reinforcement learn-
ing. ArXiv, abs/2004.07219, 2020.

S. Fujimoto, H. van Hoof, and D. Meger. Addressing func-
tion approximation error in actor-critic methods. ArXiv,
abs/1802.09477, 2018.

S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau.
Benchmarking batch deep reinforcement learning algo-
rithms. ArXiv, abs/1910.01708, 2019a.

S. Fujimoto, D. Meger, and D. Precup. Off-policy deep
reinforcement learning without exploration. In ICML,
2019b.

S. Ghadimi and G. Lan. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. ArXiv,
abs/1309.5549, 2013.

D. Ghosh, A. Gupta, J. Fu, A. Reddy, C. Devin, B. Eysen-
bach, and S. Levine. Learning to reach goals without
reinforcement learning. ArXiv, abs/1912.06088, 2019.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup,
and D. Meger. Deep reinforcement learning that matters.
In AAAI, 2018.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Os-
trovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and
D. Silver. Rainbow: Combining improvements in deep re-
inforcement learning. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

M. Jaderberg, V. Mnih, W. Czarnecki, T. Schaul, J. Z. Leibo,
D. Silver, and K. Kavukcuoglu. Reinforcement learning
with unsupervised auxiliary tasks. ArXiv, abs/1611.05397,
2017.

L. ji Lin. Reinforcement learning for robots using neural
networks. 1992.

I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. ArXiv, abs/2004.13649, 2020.

B. Krose and J. Van Dam. Adaptive state space quantisation
for reinforcement learning of collision-free navigation.
01 1995.

A. Kumar, X. B. Peng, and S. Levine. Reward-conditioned
policies. ArXiv, abs/1912.13465, 2019.

https://arxiv.org/pdf/1905.12726.pdf
https://arxiv.org/pdf/1905.12726.pdf
https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

H. Lau, K. Mak, and I. Lee. Adaptive vector quantization
for reinforcement learning. IFAC Proceedings Volumes,
35(1):493–498, 2002.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. J. Mach. Learn.
Res., 17:39:1–39:40, 2016.

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. ArXiv, abs/2005.01643, 2020.

L. Li, T. J. Walsh, and M. L. Littman. Towards a unified
theory of state abstraction for mdps. In ISAIM, 2006.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous control
with deep reinforcement learning. CoRR, abs/1509.02971,
2015.

K. Lolos, I. Konstantinou, V. Kantere, and N. Koziris. Adap-
tive state space partitioning of markov decision processes
for elastic resource management. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE),
pages 191–194, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013a.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Play-
ing atari with deep reinforcement learning. ArXiv,
abs/1312.5602, 2013b.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidje-
land, G. Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533,
2015.

S. Nair and C. Finn. Hierarchical foresight: Self-supervised
learning of long-horizon tasks via visual subgoal genera-
tion. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/
forum?id=H1gzR2VKDH.

J. Oh, Y. Guo, S. Singh, and H. Lee. Self-imitation learning.
In ICML, 2018.

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-
weighted regression: Simple and scalable off-policy rein-
forcement learning. ArXiv, abs/1910.00177, 2019.

J. Peters and S. Schaal. Using reward-weighted regression
for reinforcement learning of task space control. In 2007
IEEE International Symposium on Approximate Dynamic

Programming and Reinforcement Learning, pages 262–
267, 2007.

D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and
S. Levine. Deep reinforcement learning for vision-based
robotic grasping: A simulated comparative evaluation of
off-policy methods. 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 6284–6291,
2018.

M. Riedmiller. Neural fitted q iteration – first experiences
with a data efficient neural reinforcement learning method.
In J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge,
and L. Torgo, editors, Machine Learning: ECML 2005,
pages 317–328, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg. ISBN 978-3-540-31692-3.

J. C. Santamaria, R. S. Sutton, and A. Ram. Experiments
with reinforcement learning in problems with continuous
state and action spaces. Adaptive Behavior, 6(2):163–217,
1997. doi: 10.1177/105971239700600201. URL https:
//doi.org/10.1177/105971239700600201.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

J. Schmidhuber. Reinforcement learning upside down:
Don’t predict rewards - just map them to actions. ArXiv,
abs/1912.02875, 2019.

D. Sculley. Web-scale k-means clustering. In Proceed-
ings of the 19th International Conference on World
Wide Web, WWW ’10, page 1177–1178, New York,
NY, USA, 2010. Association for Computing Machin-
ery. ISBN 9781605587998. doi: 10.1145/1772690.
1772862. URL https://doi.org/10.1145/
1772690.1772862.

E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell.
Loss is its own reward: Self-supervision for reinforce-
ment learning. ArXiv, abs/1612.07307, 2017.

A. A. Sherstov and P. Stone. Function approximation via tile
coding: Automating parameter choice. In J.-D. Zucker
and L. Saitta, editors, Abstraction, Reformulation and
Approximation, pages 194–205, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. ISBN 978-3-540-31882-8.

S. R. Sinclair, S. Banerjee, and C. L. Yu. Adaptive dis-
cretization for episodic reinforcement learning in metric
spaces. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3:1 – 44, 2019.

R. K. Srivastava, P. Shyam, F. W. Mutz, W. Jaśkowski,
and J. Schmidhuber. Training agents using upside-down
reinforcement learning. ArXiv, abs/1912.02877, 2019.

https://openreview.net/forum?id=H1gzR2VKDH
https://openreview.net/forum?id=H1gzR2VKDH
https://doi.org/10.1177/105971239700600201
https://doi.org/10.1177/105971239700600201
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

P. Stone and R. Sutton. Scaling reinforcement learning
toward robocup soccer. pages 537–544, 01 2001.

R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

R. S. Sutton, A. R. Mahmood, and M. White. An emphatic
approach to the problem of off-policy temporal-difference
learning. The Journal of Machine Learning Research, 17
(1):2603–2631, 2016.

H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen,
Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel. ex-
ploration: A study of count-based exploration for deep
reinforcement learning. In NIPS, 2017.

J. N. Tsitsiklis and B. van Roy. Feature-based methods
for large scale dynamic programming. Mach. Learn., 22
(1–3):59–94, Jan. 1996. ISSN 0885-6125. doi: 10.1007/
BF00114724. URL https://doi.org/10.1007/
BF00114724.

J. N. Tsitsiklis and B. Van Roy. Analysis of temporal-
diffference learning with function approximation. In Ad-
vances in neural information processing systems, pages
1075–1081, 1997.

E. Uchibe, M. Asada, and K. Hosoda. Behavior coordination
for a mobile robot using modular reinforcement learning.
In Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems. IROS ’96, volume 3,
pages 1329–1336 vol.3, 1996.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural
discrete representation learning. In NIPS, 2017.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforce-
ment learning with double q-learning. In Thirtieth AAAI
conference on artificial intelligence, 2016.

H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat,
and J. Modayil. Deep reinforcement learning and the
deadly triad. ArXiv, abs/1812.02648, 2018.

Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot,
and N. De Freitas. Dueling network architectures for deep
reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

S. Whiteson. Adaptive tile coding for value function ap-
proximation. 2007.

S. Zhang, W. Böhmer, and S. Whiteson. Deep residual
reinforcement learning. ArXiv, abs/1905.01072, 2019.

https://doi.org/10.1007/BF00114724
https://doi.org/10.1007/BF00114724

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

A Supplementary Materials
A.1 Environment Details
In this section we provide further details about the environ-
ments used in our experiments. As noted in the main text,
we use the following environments: CartPole, four versions
of a Maze environment, and two Miniworld environments.

A.1.1 MAZE

We run our algorithm on 4 versions of a maze environment
where the agent is trying to get to the goal where it receives
a reward of 1. The goal is always in the same location at the
far right in the middle (see figure 5). The environments has
4 actions: up, down, right, left. The observations are 64x64
images with 3 color channels. There are 4 walls in the maze
whose length are either fixed or randomized. The underlying
state can be described with x-y coordinates ranging from
(-.27, -.27) to (.27, .27.) If the agent is not by a wall, the
agent moves either in x or y, with .035 with each action.

Dense vs sparse reward. We test our algorithm with and
without reward shaping. When there is dense reward shap-
ing, the reward is the negative L2 distance from the goal.

Randomized walls. In the "Randomized Wall" setting, the
walls have the x position as in the "Fixed Walls" settings, but
the length of the walls are randomly sampled. Specifically,
the position of the gap in the wall is randomized. In the
fixed wall setting the gaps in the walls are in the middle.
See figure 5 for examples.

A.1.2 MINIWORLD

We run our algorithm on two miniworld environments where
the task is to navigate to a fixed goal. In the first environ-
ment, the goal of the agent is to navigate from a random
position on one side of the room to a fixed blue block on the
other side of the room. And in the second environment, the
agent must first enter a second room, and then navigate to
the blue block. There are 3 actions: left, right, and forward.
The observations are RGB images with 3 color channels
and size 60 x 80. Each wall has a different color in order to
make sure the decision process less partially observed.

A.2 Experiment details
In this section we detail the hyperparameters and architec-
tures used in our experiments

Data collection
For the CartPole experiment we collect data using standard
DQN. In the Maze and Miniworld experiments, we use a
uniform random policy to collect the data.

Architecture
For the CartPole experiment we use a multi-layer perception
with three hidden layers of size 64. For both the maze
and miniworld experiment we use a convolutional neural
network as described in (Mnih et al., 2015). The network
has 3 convolutional layers followed by two linear layers

with relu activations. The number of channels are 32, 64
and 64. The filter sizes are 8, 4 and 3 and the strides are 4,
3 and 1. The penultimate linear layer has 512 neurons.

Hyperparameters.
In all experiments , we minimize the Huber loss using the
Adam optimizer with a batch size of 32 and learning rate of
1e-5. Pytorch default values are used for the other param-
eters: β1 = 0.9, β2 = 0.999 and ε =1e-8. We use double
DQN and update the target net with a period of 20, 200 or
2000 as described in the main text.

During the tabular phase, we stop the value iteration algo-
rithm, when the max error between previous and current
matrix, is below θ = 0.01. In the ETA-DP (-FT) experi-
ments, where there is no finetuning, we use a learning rate
of 1e− 3 during the supervised learning phase.

BCQ.
We implement the discrete version of BCQ introduced
in Fujimoto et al. (2019a). We use their implementa-
tion as provided in https://github.com/sfujim/
BCQ/tree/master/discrete_BCQ. We use an ac-
tion threshold of 0.3. This implementation is described in
appendix A.2 in their paper.

Concretely, we adapt the CNN described previously by
adding another branch after the convolutional layers. In
addition to having two linear layers after the convolutional
layers, we add a second branch also containing two linear
layers. The first branch outputs the estimated Q value, and
the second branch outputs the estimated probability of that
action, under the behavior policy. The loss is the sum of
three terms: 1) The standard Huber loss for the predicted
value and the target value as in DQN, 2) The cross entropy
loss and 3) a regularization term where we square the logit
for the estimated action probability. The last term forces the
estimated action probabilities to not be too centered around
one value.

A.3 Additional results

Experiment 1 Additional Results

In Figure 4 we compare our method to baselines on the
Cartpole environment, plotting the task reward (and standard
error) vs. training step (where 1 training step is one gradient
update). All runs are averaged over 3 datasets generated by
DQN agents, each of 1000 episodes.

First, we observe that ETA-DP (-FT) is stable and reliably
solves the task, reaching cumulative reward above 150. Note
that while there is some performance difference based on
the number of clusters K, ETA-DP (-FT) still stably achieves
good performance. Second, we observe that with a carefully
chosen target update frequency (2000) DDQN is on par with
ETA-DP (-FT), however with too frequent target updates
DDQN can diverge completely. Lastly, we see that in this

https://github.com/sfujim/BCQ/tree/master/discrete_BCQ
https://github.com/sfujim/BCQ/tree/master/discrete_BCQ

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

Figure 4: Experiment 1 (CartPole). ETA-DP (-FT) and Exact-
DP achieve the best performance, while DDQN exhibits sensitivity
to hyperparameters.

domain, directly applying Exact-DP also provides strong
performance, comparable to ETA-DP.

State quantization

In Figure 5 and Figure 6 we provide qualitative examples of
the result of state quantization in the maze and miniworld
environments when using 200 clusters.

Overestimation plots

In Figure 7, we plot how the maximum Q value prediction
evolves during training. We can see that in both the Maze
and Miniworld experiments, Double DQN as well as BCQ
starts overestimating Q values. Moreover, we see that for a
low target frequency, namely TF=200, the overestimation
becomes even larger.

A.4 Method Details

Description of value iteration on fixed dataset shown in
Algorithm 2.

Figure 5: State Quantization in Maze. Each column shows
examples corresponding to one distinct cluster.

Figure 6: State Quantization in Miniworld. Each column
shows observations corresponding to one distinct cluster.

Algorithm 2 VALUEITERATION(D̄)

1: Initialize Q̂ = 0
2: while not converged do
3: Initialize list of target values L = []
4: for n = 1, 2, ..., N do
5: (st, at, st+1, rt, xt, xt+1)n = D̄n
6: L(xt, at)← APPEND(rt + γmaxa Q̂(xt+1, a))
7: end for
8: for (xt, at) ∈ D̄ do
9: Q̂(xt, at)← MEAN(L(xt, at))

10: end for
11: end while
12: return Q̂

B Related Work
While value based RL has seen remarkable success in recent
years, when used in conjunction with off policy learning and
function approximation, it remains prone to instability and
hyper-parameter sensitivity (Quillen et al., 2018; Henderson
et al., 2018). Baird (1995) and Tsitsiklis and Van Roy (1997)
show that off-policy TD learning with function approxima-
tion may diverge, and with large neural network function
approximators tackling challenging tasks, these issues of
the "deadly triad" (Sutton and Barto, 2018) remain or are
exacerbated (Achiam et al., 2019; van Hasselt et al., 2018).
As a result, there have been numerous works in recent years
trying to study and tackle the stability challenges of deep
value based RL from various angles.

Stabilizing deep Q learning. Early work on neural fitted

Figure 7: Overestimation Shows the average target value pre-
dicted by different methods. We observe that DDQN struggles
with overestimation, as does BCQ (to a lesser extent).

Exact (Then Approximate) Dynamic Programming for Deep Reinforcement Learning

Q iteration (NFQ) (Riedmiller, 2005) explored training to
convergence on a set of data/targets before collecting new
data. Similarly, Mnih et al. (2013a) proposed to integrate
experience replay (ji Lin, 1992) and target networks. There
have since been many new approaches for tackling stability,
which aim to reduce overestimation bias (Van Hasselt et al.,
2016; Wang et al., 2015; Fujimoto et al., 2018), reduce
volatility in the target network (Lillicrap et al., 2015; Zhang
et al., 2019; Kostrikov et al., 2020), and stabilize gradients
with auxiliary losses (Jaderberg et al., 2017; Shelhamer
et al., 2017). Distributional RL (Bellemare et al., 2017) has
additionally been shown to improve stability. Many of these
techniques have been combined to achieve state of the art
performance (Hessel et al., 2018). Like this work, these
works effectively change the targets, or the gradients which
influence the targets, in order to make learning more stable.
However unlike prior work, this work explicitly focuses on
decoupling target generation and function approximation.

Reweighting transitions for stability and speed. Another
approach to stabilizing deep Q learning is to re-weight tran-
sitions during TD learning. Many of these methods draw
inspiration from prioritized sweeping (Sutton and Barto,
2018) in the tabular setting, where states with high Bellman
error are prioritized in updates, as well as the states that lead
into them. Prioritized experience replay (PER) (Schaul et al.,
2015) and prioritized sequence experience replay (PECR)
(Brittain et al., 2020) apply this idea in the deep Q learning
setting. Numerous other works have tried similar sampling
schemes, based on adversarial objectives (Fu et al., 2019),
likelihood under the policy (Sutton et al., 2016), and esti-
mated target error (Kumar et al., 2019). While these works
aim to stabilize Q learning by modifying the data distribu-
tion, they still jointly perform bootstrapping and function
approximation, unlike our method.

Framing reinforcement learning as supervised learning.
Similar to this work, there has been significant prior work
that aims to turn reinforcement learning into a supervised
learning problem. Early work (Peters and Schaal, 2007)
posed reinforcement learning as reward weighted regres-
sion, and recent work has incorporated advantage weighting
(Peng et al., 2019). Another approach is to frame reinforce-
ment learning as self-imitation (Oh et al., 2018), where the
agent clones its past actions or those of a learned policy,
and has also been explored recently in the goal-conditioned
setting (Ghosh et al., 2019). Another way of transforming
reinforcement learning into a supervised learning problem is
by conditioning on desired reward or advantage, a technique
explored in recent work (Schmidhuber, 2019; Srivastava
et al., 2019; Kumar et al., 2019). Unlike most of these
works, our technique still relies on bootstrapping, as it en-
ables reasoning over long horizons. However it does so
in the absence of function approximation, and introduces
function approximation only for supervised learning.

Discretizing states for tabular reinforcement learning.
State quantization combined with tabular reinforcement
learning is a technique that has been applied to control
problems for decades. In robotics, early approaches used
manually-designed quantizations of the state space in con-
junction with Q learning for control (Asada et al., 1996;
Uchibe et al., 1996). Learning based techniques have also
been applied to learn discretizations, such learned segmen-
tation (Asada et al., 1998; del R. Millán et al.), tile coding
(Santamaria et al., 1997; Stone and Sutton, 2001; Sherstov
and Stone, 2005), or more recently deep networks (Corneil
et al., 2018; Biza et al., 2020), and applied them to explo-
ration (Tang et al., 2017) or hierarchical RL (Asadi et al.,
2020). Prior work has also learned these discetizations adap-
tively (Krose and Van Dam, 1995; Lolos et al., 2017; White-
son, 2007; Sinclair et al., 2019; Lau et al., 2002). Similarly,
a large body of work has studied state abstraction (Tsitsiklis
and van Roy, 1996; Li et al., 2006; Abel et al., 2016; Dong
et al., 2019) in relation to Q learning. All of these works are
related to ours in that they quantize the state space (or learn
a state abstraction) and use it with Q learning. However
our key contribution is in additionally leveraging supervised
learning and deep Q learning on top of the learned tabular
solution, enabling generalization, which we find is critical
for good performance on challenging problems.

	Introduction
	Exact (Then Approximate) Dynamic Programming (ETA-DP)
	Quantizing States
	Value Iteration on Discrete Graph
	Supervised Regression of Tabular Values
	Approximate Dynamic Programming Finetuning

	Experiments
	Experiment 1: Does ETA-DP (Without Finetuning) Outperform Deep Q Learning?
	Experiment 2: Does Combining Regression of Tabular Values and Deep Q Learning Finetuning Provide Both Asymptotic Performance and Stability?

	Supplementary Materials
	Environment Details
	Maze
	Miniworld

	Experiment details
	Additional results
	Method Details

	Related Work

