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Figure 1. Original robot configuration used for pre-training (left), and adaptation challenges (highlighted in pink) studied in this work
(right) with associated performance improvements (top) obtained using our fine-tuning method.

Abstract

One of the great promises of robot learning sys-
tems is that they will be able to learn from their
mistakes and continuously adapt to ever-changing
environments. Despite this potential, most of
the robot learning systems today are deployed
as a fixed policy and they are not being adapted
after their deployment. We present empirical
evidence towards a robot learning framework
that facilitates continuous adaption. We demon-
strate how to adapt vision-based robotic manipu-
lation policies to new variations by fine-tuning via
off-policy reinforcement learning. This adapta-
tion uses less than 0.2% of the data necessary
to learn the task from scratch. We find that
pre-training via RL is essential: training from
scratch or adapting from supervised ImageNet
features are both unsuccessful with such small
amounts of data. We also find that these positive
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results hold in a limited continual learning set-
ting Our empirical conclusions are consistently
supported by experiments on simulated manip-
ulation tasks, and by 52 unique fine-tuning ex-
periments on a real robotic grasping system pre-
trained on 580,000 grasps. For video results, see
the project website at https://ryanjulian.
me/continual-fine-tuning.

1. Introduction

The ability to constantly learn, adapt, and evolve is arguably
one of the most important properties of an intelligent agent
prepared to exist in the real world. Similarly, our robots
should be able to continuously learn and adapt throughout
their lifetime to the ever-changing environments that they
are deployed in. This is a widely recognized requirement. In
fact, there is an entire academic sub-field of lifelong learn-
ing (Thrun, 1998) that is interested in the problem of agents
that never stop learning. Despite the wide interest in this
ability, most of the intelligent agents deployed today are not
tested for their adaptation capabilities. Even though tech-
niques such as reinforcement learning theoretically provide
the ability to perpetually learn from trial and error, this is not
how they are typically evaluated. Instead, the predominant
method of acquiring a new task with reinforcement learning
is to initialize a policy from scratch, collect entirely new
data in a stationary environment, and evaluate a static policy
that was trained with this data.
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This static paradigm does not evaluate the robot’s capability
to adapt. It also traps robotic reinforcement learning in the
worst-case regime for sample efficiency: the cost to acquire
a new task is dominated by sample efficiency of the learning
algorithm and the complexity of the task, as reflected in
cost of acquiring diverse task data starting from naive (e.g.
random) exploration.

Most machine learning models successfully deployed in
the real world, such as those used for computer vision and
natural language processing (NLP) do not live in this regime.
For instance, the predominant method of acquiring a new
computer vision task is to start learning the new task with
a pre-trained model for a related task, acquired from a pre-
collected data set, and fine-tune that model to achieve the
new task (Donahue et al., 2014; Howard & Ruder, 2018b;
Devlin et al., 2018). This changes the sample efficiency
regime of the learning process from one which is dominated
by task complexity to one that is dominated by task novelty,
i.e. the difference between the new task and the task on
which the model was pre-trained. While a number of works
have studied how to use pre-trained ImageNet (Deng et al.,
2009) features for robotics (Yosinski et al., 2014; Huh et al.,
2016; Kornblith et al., 2019), there are remarkably few
works that study how to adapt motor skills themselves. Our
work attempts to bridge this gap.

We adapt an image-based grasping policy to changes in
background, object shape and appearance, lighting condi-
tions, and robot morphology and kinematics, while using
less than 0.2% of the data necessary to learn the same task
from scratch (see Fig. 1). Our results, supported by simu-
lation and extensive real-world experiments, indicate that
a pre-adaptation policy acquired for a task using reinforce-
ment learning can be used to acquire policies for nearby
tasks using very little new data and a simple update proce-
dure. Furthermore, we find that this approach of adapting
pre-trained policies with off-policy reinforcement learning
(RL) leads to substantial improvements over the course of
fine-tuning, and that pre-training via RL is essential: it sig-
nificantly outperforms conventional pre-training techniques
using supervised learning on task-agnostic datasets. We
believe this simple adaptation scheme provides a promis-
ing solution for creating a lifelong learning robotic agent,
and show this potential using a simple continual learning
experiment.

To our knowledge, this work is the first to demon-
strate that simple fine-tuning of off-policy reinforce-
ment learning can successfully adapt to substantial
task, robot, and environment variations which were not
present in the original training distribution (i.e. off-
distribution).

2. Related Work

We consider how we might transfer knowledge for effi-
cient learning in new conditions (Taylor & Stone, 2009;
Pan & Yang, 2009; Tan et al., 2018a), a widely-studied
problem particularly outside of the robotics domain (Don-
ahue et al., 2014; Howard & Ruder, 2018b; Devlin et al.,
2018; Dai et al., 2007; Raina et al., 2007). Prior works
in robotics have considered how we might transfer infor-
mation from models trained with supervised learning on
ImageNet (Deng et al., 2009) by fine-tuning (Levine et al.,
2016; Finn et al., 2016; Gupta et al., 2018; Pinto & Gupta,
2016) or other means (Sermanet et al., 2017; Hazara &
Kyrki, 2019). Our experiments show that transfer from
pre-trained conditions is significantly more successful than
transfer from ImageNet. Other works have leveraged expe-
rience in simulation (Sadeghi & Levine, 2017; Tobin et al.,
2017; Sadeghi et al., 2018; Tan et al., 2018b; OpenAl et al.,
2019; Rusu et al., 2016; Peng et al., 2018; Higuera et al.,
2017; Hamaéldinen et al., 2019) or representations learned
with auxiliary losses (Riedmiller et al., 2018; Mirowski
et al., 2016; Sax et al., 2019) for effective transfer. While
successful, these approaches either require significant en-
gineering effort to construct an appropriate simulation or
significant supervision. Most relevantly, recent work in
model-based RL has used predictive models for fast transfer
to new experimental set-ups (Chatzilygeroudis & Mouret,
2018; Ha & Schmidhuber, 2018), i.e. by fine-tuning pre-
dictive models (Dasari et al., 2019), via online search of
a pre-learned representation of the space models, policies,
or high-level skills (Chatzilygeroudis et al., 2018; Cully
et al., 2015; Kaushik et al., 2020; Merel et al., 2019), or by
learning physics simulation parameters from real data (Ras-
togi et al.; Jeong et al., 2019). We show how fine-tuning is
successful with a model-free RL approach, and show how
a state-of-the-art grasping system can be adapted to new
conditions.

3. A Very Simple Fine-Tuning Method

We define then evaluate a simple technique for offline fine-
tuning.

Our experiments model an “on the job” adaptation scenario,
where a robot is initially trained to perform a general task
(in our case, grasping diverse objects), and then the condi-
tions of the task change in a drastic and substantial way as
the robot performs the task, e.g. through the introduction
of significantly brighter lighting, or a peculiar and unex-
pected type of object. The robot must adapt to this change
quickly in order to recover a proficient policy. Handling
these changes reflects what we expect to be a common re-
quirement of reinforcement learning policies deployed in
the real world: since an RL policy can learn from all of the
experience that it has collected, there is no need to sepa-
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Figure 2. Schematic of the simple method we test in Section 3,
using the conceptual framework we discuss in Appendix B.1. We
pre-train a policy using the old data from the pre-training task,
which is then adapted using the new data from the fine-tuning task.

rate learning into clearly distinct training and deployment
phases. Instead, it is likely desirable to allow the policy to
simply continue learning “on the job” so as to adapt to these
changes.

3.1. The Method

We define a very simple fine-tuning procedure for off-policy
RL, as follows (Fig. 2).

First, we (1) pre-train a general grasping policy, as describe
in Appendix A.1 and (Kalashnikov et al., 2018). To fine-
tune a policy onto a new target task, we (2) use the pre-
trained policy to collect an exploration dataset of attempts
on the target task; then (3) initialize the same off-policy
reinforcement learning algorithm which was used for pre-
training (QT-Opt, in our case) with the parameters of the
pre-trained policy, and both the target task and base task
datasets' as the data sources (e.g. replay buffers); we then
(4) update the policy with this training algorithm, using a
reduced learning rate, and sampling training examples with
equal probability from the base and target task datasets, for
some number of update steps. Finally, we (5) evaluate the
fine-tuned policy on the target task.

Our method is offline, i.e. it uses a single dataset of target
task attempts, and requires no robot interaction after initial
dataset collection to compute a fine-tuned policy, which may
then be deployed onto a robot.

"We assume this dataset was saved during training of the base
policy

3.2. Evaluating offline fine-tuning for real-world
grasping

We now turn our attention to how to evaluating this simple
method’s effectiveness as an adaptation procedure for end-
to-end robot learning, and perhaps continual learning. Our
goal is to determine whether the method is sample efficient,
whether it works over a broad range of possible variations,
and to determine whether it performs better than simpler
ways of acquiring the target tasks.

With this goal in mind, we conduct a large panel of ablation
experiments experiments on a real 7 DoF Kuka arm. These
experiments evaluate the performance of our method across
the diverse range of Challenge Tasks (See Appendix A) and
a continuum of target task dataset sizes, and compare this
performance to two comparison methods.

The experiments are very challenging. The Transparent Bot-
tles task in particular presents a major challenge to most
grasping systems: the transparent bottles generally confuse
depth-based sensors and, especially in cluttered bins, re-
quire the robot to singulate individual items and position
the gripper in the right orientation for grasping. Although
our base policy uses only RGB images, it is still not able to
grasp the glass bottles reliably, because they differ so much
from the objects it observed during training. However, after
fine-tuning with only 1 hour (100 grasp attempts) of experi-
ence, we observe that the transparent bottles can be picked
up with a success rate of 66%, 20% better than the base pol-
icy. Figure 4 shows how the robot’s view changes for each
challenge task. Note the extreme glare and robot reflections
visible in images from the Harsh Lighting challenge.

For videos of our experimental results, see the project web-
site.”

Collect datasets First, we collect a dataset of 800 grasp
attempts for each of our 5 challenge tasks (see Table 3) plus
the base grasping task. We then partitioned each dataset
into 6 tiers of difficulty by number of exploration grasps
(25, 50, 100, 200, 400, and 800 grasp attempts), yielding 36
individual datasets.

Train fine-tuned policies We train a fine-tuned policy for
each of these 36 datasets using the procedure described
above. We execute the fine-tuning algorithm for 500,000
gradient steps (see Appendix C for more information on
how we chose this number) and use a learning rate of 104,
which is 25% of learning rate used for pre-training. This
yields 36 fine-tuned policies, each trained with a different
combination of target task and target dataset size. This set
of 36 policies includes 6 policies fine-tuned on data from

2For video results, see https://ryanjulian.me/
continual-fine-tuning
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Challenge Task Original Policy

Ours (exploration grasps)

Comparisons

25 50 100 200 400 800 Best (A) Scratch ImageNet
Checkerboard Backing 50% 67% 48% 1% 47% 89% 90% 90% (+40) 0% 0%
Harsh Lighting 32% 23% 16% 52% 44% 58% 63% 63% (+31) 4% 2%
Extend Gripper 1 cm 75% 93% 67% 80% 51% 90% 69% 93% (+18) 0% 14%
Offset Gripper 10 cm 43% 73% 50% 60% 56% 91% 98% 98% (+55) 37% 47%
Transparent Bottles 49% 46% 43% 65% 65% 58% 66% 66% (+17) 27% 20%
Baseline Grasping Task 86% 98% 81% 84% 78% 93% 89% 98% (+12) 0% 12%

Table 1. Summary of grasping success rates (N > 50) for the experiments by challenge task, fine-tuning method, and number of
exploration grasps. The experiments “Scratch” and “ResNet 50 + ImageNet” both use 800 exploration grasps and the same update process
as the other experiments. “Scratch” starts the grasping network with randomly-initialized parameters. “ResNet 50 + ImageNet” refers to
training a grasping network with an equivalent architecture to the other experiments, but with its convolutional layers replaced with a
ResNet 50 architecture and pre-loaded with ImageNet features; the non-CNN parts of the network (MLPs for the action inputs and the

Q-value output) are randomly-initialized.

the base grasping task, for validation.

Train comparisons To provide points of comparison, we
train two additional policies for each challenge task and the
base grasping task, yielding 12 additional policies.

The first comparison (“Scratch”) is a policy trained using the
aforementioned fine-tuning procedure and an 800-grasp data
set, but using a randomly-initialized Q-function rather than
the Q-function obtained from pre-training. The purpose
of this comparison is to help us assess the contribution
of the pre-trained parameters to the fine-tuning process’
performance.

The second comparison (“ImageNet”) is also trained using
an identical fine-tuning procedure and the 800-grasp dataset,
but uses a modified Q-function architecture in which we
replace the convolutional trunk of the network with that
of the popular ResNet50 architecture (He et al., 2016), ini-
tialized with the weights obtained by training the network
to classify images from the ImageNet dataset (Deng et al.,
2009). Refer to to Fig. 9 for a diagram of the unmodified
architecture. We initialize the remaining fully-connected
layers with random parameters, and concatenate the action
input features at the end of the CNN (rather than the adding
them in middle of the CNN, as in the original architecture).
Note that in this comparison, the fine-tuning process still
updates all parameters, including those of the ResNet50
sub-network. The purpose of this comparison is to provide
a comparison to a strong alternative to end-to-end RL for
obtaining pre-training parameters.

Evaluate performance Finally, we evaluate all 48 poli-
cies on their target task by deploying them to the robot and
executing 50 or more grasp attempts to calculate the policy’s
final performance. To reduce the variance of our evaluation
statistics, we shuffle the contents of the bin between each
trial by executing a randomly-generated sequence of sweep-
ing movements with the end-effector.

The full experiment required more than 15,000 grasp at-

tempts and 14 days of real robot time, and was conducted
over approximately one month.

We present a full summary of our results in Table 1. Across
the board, we observe substantial benefits arising from fine-
tuning, suggesting that the robot can indeed adapt to drasti-
cally new condition with a modest amount of data: our most
data-intensive experiment uses just 0.2% of the data used
train the base grasping policy to similar performance. Our
method consistently outperforms both the “ImageNet” and
“Scratch” comparison methods. We provide more detailed
analysis of this experiment in the next section.

The experiments are very challenging. For example, the
“Transparent Bottles” task presents a major challenge to
most grasping systems: the transparent bottles generally
confuse depth-based sensors and, especially in cluttered
bins, require the robot to singulate individual items and
position the gripper in the right orientation for grasping.
Although our base policy uses only RGB images, it is still
not able to grasp the transparent bottles reliably, because
they differ so much from the objects it observed during train-
ing. However, after fine-tuning with only 1 hour (100 grasp
attempts) of experience, we observe that the transparent
bottles can be picked up with a success rate of 66%, 20%
better than the base policy. Similarly, the “Checkerboard
Backing” challenge task asks the robot to differentiate edges
associated with real objects from edges on an adversarial
checkerboard pattern. It never needed this capability to suc-
ceed during pre-training, where the background is always
featureless and grey, and all edges can be assumed to be
associated with a graspable object. After 1 hour (100 grasp
attempts) of experience, using our method the robot can
grasp objects on the checkerboard background with a 71%
success rate, 21% better than the base policy, and this suc-
cess rate reaches 90% after 8 hours of experience (800 grasp
attempts).
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Figure 3. Flow chart of the continual learning experiment, in
which we fine-tune on a sequence of conditions. Every transi-
tion to a new scenario happens after 800 grasps.

3.3. Evaluating Offline Fine-Tuning for Continual
Learning

Now that we have defined and evaluated a simple method
for offline fine-tuning, we evaluate its suitability for use in
continual learning, which could allow us to achieve the goal
of an robot which adapts to ever-changing environments
and tasks. To do so, we define a simple continual learning
challenge as follows (Fig. 3).

As in the fine-tuning experiments, we begin with a base
policy pre-trained for general object grasping. Likewise,
we also use our fine-tuning method to adapt the base policy
to a target task, in this case “Harsh Lighting.” Not content
to stop there, we use this adapted policy—not the base
policy—as the initialization for another iteration of our fine-
tuning algorithm, this time targeting “Transparent Bottles.”
We repeat this process until we have run out of new tasks,
ending at the task “Offset Gripper 10cm,” at which point we
evaluate the policy on the last task.

We perform this experiment using 800 exploration-grasp
datasets for each Challenge Task from our ablation study
of online fine-tuning with real robots. We summarize the
results in Table 2. Note that because it is the first step of
the continual learning experiment, the policy for “Harsh
Lighting” is identical to that of the 800-grasp variant of the
single-step experiment.

Recall that our goal for this experiment is to determine
whether continual fine-tuning incurs a significant perfor-
mance penalty compared to the single-step variant, because
we are interested in using this method as a building block
for continual learning algorithms. We find that continual
fine-tuning does not impose a drastic performance penalty
compared to single-step fine-tuning. The continual fine-
tuning policies for the “Checkerboard Backing,” “Extend
Gripper 1 cm,” and “Offset Gripper 10 cm,” challenges suc-
ceeded in grasping between 4% and 7% less often than
their single-step fine-tuning counterparts, whereas the pol-
icy for the challenging “Transparent Bottles” case actually
succeeded 8% more often. These small deltas are within the

Challenge Task Continual Learning

Base Single

Harsh Lighting 63% +32% -

Transparent Bottles 74% +25% +8%
Checkerboard Backing 86% +36% —4%
Extend Gripper 1 cm 88% +12% —5%
Offset Gripper 10 cm 91% +44% —7%

Table 2. Summary of grasping success rates (/N > 50) for the con-
tinual learning experiment by challenge task, and comparison to
single-step fine-tuning. “Base” refers to the baseline grasping pol-
icy before fine-tuning, and “Single” refers to the best performance
from the single-step fine-tuning experiment in Table 1. Note that
because it is the first step of the continual learning experiment, the
policy for “Harsh Lighting” is identical to that of the 800-grasp
variant of the single-step experiment.

margin-of-error of our evaluation procedure, so we conclude
that the effect of continual fine-tuning on the performance
compared to single-step fine-tuning is very small. This
experiment demonstrates that our method can perform con-
tinual adaptation, and may serve as the basis for a continual
end-to-end robot learning method.

4. Conclusion

For robots to be able to operate in unconstrained environ-
ments, they must be able to continuously adapt to new situa-
tions. Our large-scale study shows that combining off-policy
RL with a very simple fine-tuning procedure is an effective
adaptation method, and this method is capable of achiev-
ing remarkable improvements in robot performance on new
tasks with very little new data. Furthermore, our continual
learning experiment shows that using this simple method in
a continual setting imposes very little performance penalty
compared to the single-step setting. This suggests that the
combination of off-policy RL and fine-tuning can serve as a
building block for future continual learning methods. Our re-
sults comparing supervised-learning-based initialization to
those acquired with our RL-fine-tuning approach highlight
a familiar truism about robotics: that robotic agents must do
more than perceive the world, they must also act in it. The
ability to learn the combination of these two capabilities is
what makes RL well-suited for creating continually-learning
robots.
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