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Abstract
Human beings learn causal models and constantly
use them to transfer knowledge between simi-
lar environments. We use this intuition to de-
sign a transfer-learning framework using object-
oriented representations to learn the causal rela-
tionships between objects. A learned causal dy-
namics model can be used to transfer between
variants of an environment with exchangeable per-
ceptual features among objects but with the same
underlying causal dynamics. We adapt continu-
ous optimization for structure learning techniques
(Zheng et al., 2018) to explicitly learn the cause
and effects of the actions in an interactive environ-
ment and transfer to the target domain by catego-
rization of the objects based on causal knowledge.
We demonstrate the advantages of our approach
in a gridworld setting by combining causal model-
based approach with model-free approach in re-
inforcement learning.

1. Introduction
In reinforcement learning, two kind of approaches are com-
mon - model-free learning and model-based learning (Sutton
& Barto, 1999). In model-free learning, the agent learns
to directly estimate the future reward for different states
without building an explicit model of the system while in
model-based learning the agent explicitly learns the state
transition and reward distributions of the system. In model-
based learning, the model can be prediction-based, where
the goal is to accurately predict the future state or it can be
causal, where the goal is to explicitly model the variables
(causes) responsible for the state transition and rewards.
Experimental work in cognitive science has shown that hu-
mans and animals use a combination of model-based and
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model-free algorithms.(Dolan & Dayan, 2013)

Building explicit causal models for the systems provide the
advantage of explicit understanding of the dynamics of the
system and re-using the causal knowledge to transfer to the
variations of the system. For example, while learning a new
video game, we first learn about different objects within the
game, their perceptual features (e.g. color, shape, material
etc.), causal characteristics (like what will happen if you hit
a wall) and causal relationships between different objects
(e.g. switching on the switch causes bulb to light.) Now,
if we are presented with a new variant of the game with
different looking objects but similar causal characteristics
then we tend to transfer knowledge by mapping the objects
seen in the previous game with the objects in the new game
based on similar causal behavior. On the other hand, if we
are presented with a new variant of the game with similar
looking objects but with different causal characteristics, then
we need to augment the causal model for those objects with
new causal characteristics.

In either case, multiple characterization of the objects in
terms of their perceptual features as well as causal proper-
ties provide several advantages. First, this characterization
allows the flexibility to decouple the perceptual represen-
tation of an object from their causal properties, allowing
combinatorial generalization over systems with different
combination of these features. Second, it allows to build
abstract causal knowledge in the form of high-level causal
concepts. (e.g. Hitting a wall causes no movement even if
the wall were red, blue or black in color). [(Kemp et al.,
2010)].

Object-oriented MDP (Diuk et al., 2008) provides an effi-
cient way of modeling an environment as it factorizes the
state space over different objects and thus, reducing the large
state-space. Also, it provides an abstraction by attributing
the effect of the objects to the object’s characteristics rather
than it’s specific location in the state space, which is the
case in pixel-based representation (assuming the model is
trained on images).

In this work, we combine ideas from object-oriented MDPs
(Diuk et al., 2008), structure learning (Zheng et al., 2018),
and categorization as causal reasoning (Rehder, 2003),
(Kemp et al., 2010). Our main contribution can be sum-
marized as below:
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• We formulate and evaluate the learning of the state transi-
tion model in OO-MDP as a parametric structure learning
problem using continuous optimization of score-based
structure learning techniques.

• We formulate and evaluate the causal dynamics model
combined with model-free approach on a toy gridworld
problem as a proof-of-concept.

• We formulate transfer learning as a structure mapping
problem where we learn mapping from objects in the
source domain to the target domain based on the causal
structure.
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Figure 1. High-level schematic diagram to illustrate the overall
approach for transfer learning. (a) Object based segmentation of
source environment consisting of an agent (in yellow), two keys
(in blue-green) and two locks (in red). Each object is described
by it’s attributes {x-position (O.x), y-position (O.y), color (O.c)}
attributes (b) Causal Dynamics model of source environment for
taking action ‘UP’. (c) Target environment with same rules as
source environment but different (inverted) colors of keys and
locks. (d) Causal Dynamics model of target environment for taking
action ‘UP’.

2. Preliminaries and Problem Statement
2.1. Notation

The traditional formalism for the reinforcement learning
problem is the Markov Decision Process (MDP). An MDP
is a five-tuple (S,A, T,R, γ), where S is a set of states, A
is the set of actions, T (s(t+1)|s(t), a(t)) is the probability of

transforming from state s(t) ∈ S to s(t+1) ∈ S after action
a(t) ∈ A,R(r(t+1)|s(t), a(t)) is the probability of receiving
the reward r(t+1) ∈ R after executing action a(t) while in
state s(t), and γ ∈ [0, 1] is the rate at which future rewards
are exponentially discounted. In object-oriented MDP, we
assume that the state consists of N objects (or entities) and
each object has M attributes. Oi refers to the ith object and
let α(t)

i,j refer to the jth attribute value of the ith object at

time t. O(t)
i = (α

(t)
i,1, . . . α

(t)
i,M ) refers to the state of the ith

object at time t. The complete state of the MDP at time
t is s(t) = (O

(t)
1 . . . O

(t)
N ). Example of an attribute αij is

{color, x-position, y-position etc}. Attributes which remain
constant over time in a given environment characterize the
object. (e.g. color characterizes locks, keys, agent and walls
in a particular environment.)

2.2. Problem Statement

Let’s assume that there are two deterministic environments,
source S and target T . In this work, we assume that the
two environments have same causal dynamics model but
different perceptual features. In S, agent can experiment
with the environment more freely by taking random actions
while it is more expensive to experiment in T . Our goal is
to transfer knowledge from S to T with minimum possible
interventions in T and learn an optimal policy for T .

2.3. Toy Environment: Triggers

We provide a proof-of-concept for our approach using a
toy-environment (known as Triggers), first introduced in
(Ferret et al., 2019). In this gridworld based environ-
ment, the agent can take one of the four possible actions
{north, south, east or west}. Hitting black walls doesn’t
change the agent’s position and moving in the free space
increases or decreases the agent’s x or y position by 1, de-
pending on the action. In source environment (Figure 1(a)),
green colored boxes represent the keys and red-colored
boxes represent the locks. The agent should collect all the
keys before it can attempt opening one of the locks. If the
agent attempts to open the lock when at least one of the keys
is still present, the agent receives a negative reward of −1.
It receives +1 reward for opening each lock successfully.
The key boxes disappear when collected and the lock boxes
disappear when opened successfully. In the target environ-
ment, (Figure 1(d)), we change the colors of the keys and
locks. The goal is to transfer the knowledge from source to
target by mapping the causal behavior of the objects (keys
and doors) with corresponding colors (perceptual features).

3. Our approach
Our approach mainly consists of three steps which are also
summarized in Figure 1. We assume that the object-oriented
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representation of the environment is learned from input
images using unsupervised visual-object reasoning modules
(Eslami et al., 2016) and is already provided to us. We learn
the causal dynamics model MS of the source environment
from the agent’s interactions in the source environment
using a random policy and use the dynamics model for
planning in S. The causal dynamics model consists of the
causal structure between the object attributes at the current
time-step and the next time-step, parametrized by Φ. In
the target environment, we start with the assumption that
it follows the same dynamics model MS . We simulate
the initial trajectories for T0 timesteps and also observe
the state transition and reward by actually experimenting
in the target environment. This will lead to the inaccurate
prediction using MS when interacting with some set of
objects OT

1 . . . O
T
s . We learn a mapping from attributes α′ij

of such objects in the target environment OT to attributes
αij of objects in source environment OS such that MS is
invariant in T .

3.1. Structure Learning in Object Oriented-MDPs

The problem of structure learning in OO-MDPs can be
formulated as learning a directed acyclic graphGa = (V,E)
with object attributes as vertices V ∈ RN×M and E ∈
RNM×NM . We assume that the dependencies encoded by
DAG represent direct causal dependencies. This assumption
is reasonable in our context because we discover the causal
graph by performing interventions (random policy) in the
environment rather than by using observational data. Note,
that in OO-MDPs each Ga is specific to each value a ∈
A of an action because different actions might result in
different causes for the state transitions, resulting in different
graphs. For example, if an agent takes an ‘UP’ action, then
the only attributes corresponding to the object in the ‘UP’
direction might be valid causes for the state transition of
the agent. Due to the determinstic and stationary nature of
the environment, we obtained one fixed graph Ga for each
action a.

(Zheng et al., 2018) (Zheng et al., 2020) introduced an
approach (NOTEARS) in which structure learning can be
formulated as a continuous optimization problem, making
the score-based structure learning approaches efficient for
high-dimensional input variables.

Let us represent the current state and next state of attributes
as X = {α(t)

11 , α
(t)
12 . . . α

(t)
NM , α

(t+1)
11 , α

(t+1)
12 , . . . α

(t+1)
NM }

with dimension d = 2NM , Causal generative process of
each attributeXj can be written as: Xj = fj(Pa(Xj)). We
assume that the attributes at time t+ 1 cannot be parents of
attributes at time t. Though, we allow the edges between the
attributes corresponding to same timestamp (e.g. α(t)

ip and

α
(t)
jq ) which are interpreted as relational dependencies rather

than a causal dependency (e.g. spatial relationship between

x-position of the up neighbor and x-position of the agent).
Assuming agent as reference, dependence between x-y posi-
tion of neighboring objects and agent can be encoded as a
directed edge.

Our goal is to learn a DAG Ga(Φ) by learning f =
(f1, f2, f3 . . . fd). We assume that fj is a function approxi-
mated by neural networks using the parameters Φj . Thus,
the optimization problem becomes

min
Φ
L(Φ) =

1

n

d∑
j=1

l(xj , f(X,Φj))

subject to

h(W (Φ)) = 0

where W (f) = W (f1, f2 . . . fd) ∈ Rd×d encodes the
graph edges Ga(Φ), i.e. [w(f)]kj = ‖ ∂fj

∂Xk
‖L2 = 0 if

Xk /∈ Pa(Xj) and h(W (Φ)) = tr(eW ·W )−d encodes the
acyclicity constraint. Refer (Zheng et al., 2018) and (Zheng
et al., 2020) for more details.

Previously, (Kansky et al., 2017) have used a similar ap-
proach called Schema Networks for zero-shot learning by
building an explicit causal generative model. Our approach
to learn causal structure using NOTEARS provides several
advantages compared to the integer-programming based
structure learning used in Schema Networks. First, the
binary representation for attributes used by the schema net-
works limits the scope of their approach as binary repre-
sentation makes the approach computationally challeng-
ing for high-dimensional attributes. NOTEARS with para-
metric DAGs, on the other hand allows using continuous
and discrete variables for the structure learning. Second,
NOTEARS with object-oriented representation can learn
state-space abstraction by capturing relational dependencies.
For example, if two objects interact when they are adjacent
to each other, then the interaction between attributes of dif-
ferent objects can be learned in the functional form of fk(j)
regardless of the absolute positions of the objects.

3.2. Structure Mapping from Source to Target

We describe our structure mapping approach in Algorithm
1. Intuitively, there are two ways to do structure mapping,
either by updating G(Φ) to G(Θ) or by mapping the source
object attributes to target object attributes and categorize
objects in the same group if causal behaviors are the same.
The first approach requires learning the functional relation-
ships Θ from scratch, assuming the graph structure remains
the same. If we assume underlying causal dynamics remain
the same, then we can adopt the second approach where
the goal is to learn a mapping from source objects to target
objects. (See Algorithm 1)
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Algorithm 1 Structure Mapping from G(Φ) to G(Θ)

Input: Causal Dynamics Model Ga(Φ), Optimal Q-
values Q∗(S,A) from source environment
repeat
S ← Current state in object-oriented representation.
A← ε− greedy(S,Q)
Execute action A, observe next state S′ and reward R
RG, S′G ← Ga(S,Φ)
if R 6= RG OR S′ 6= S′G then
OA.attr ← OA.color (Pick attribute which charac-
terize object)
Identify OS such that Θreward(OA.attr) =
Φreward(OS .attr) = R and Θstate(OA.attr) =
Φstate(OS .attr) = S′

Categorize OS and OA in same group and map at-
tribute OA.attr to OS .attr

end if
until T0 steps

4. Experimental Evaluation
4.1. Structure Learning

We trained the structure learning algorithm on the source
Trigger environment with different size of the state space (by
varying grid’s width and height from 5 to 75) and different
numbers and locations of the keys and locks. Input X is
19-dimensional vector containing (x-position, y-position,
color) attributes of agent, four neighbors and reward, and
agent’s x,y positions at t+1. We also include num keys as
the variable which represents the number of keys present in
the environment at each time step. In Figure 2, we observe
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Figure 2. L2 norm ‖Φj(X)‖L2 of Weight Values for learned
bayesian graph Gup for action ‘UP’. Attributes on y-axis are po-
tential parents (causes) of the corresponding jth attribute on x-axis
(Xj), with parameters Φj . Positive values of weights indicate edge
between parents and children.

that the attribute future reward rt has total number of keys
(num keys) and color of the ‘up’ neighbor (up.ct) as the

parents, as expected. For agent’s next positions xt+1 and
yt+1 , it’s current x and y positions and color of the ‘up’
neighbor are the causes. We also see edges between x and
y positions of the neighbors and the agent due to spatial
dependency between them.

4.2. Agent’s Performance in Source Environment

To evaluate the efficiency of learned causal dynamics model,
we use the model to do planning alongwith exploration in
the source environment. We use random shooting plan-
ning algorithm (Nagabandi et al., 2017) to select the op-
timal action sequence. Figure 3 compares the perfor-
mance of trained DQN agent and DQN agent alongwith
online causal planning agent (Causal Model +DQN). Ex-
ploration parameter ε is reduced to 0.05 in DQN after
planning steps due to which less than 50% less random
actions were taken by combined model-free and model-
based approach. We observe that combined agent con-
verges faster than the purely model-free agent, with less
variance. (See Appendix for more details.) Code re-
quired to reproduce our experiments is available online at
https://github.com/Information-Fusion
-Lab-Umass/causal transfer learning.
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Figure 3. Planning using Causal-Dynamics Model

5. Discussion and Future Work
In this work, we built an explicit causal dynamics model
for deterministic and discrete environments with the goal to
transfer the knowledge in domains with similar dynamics.
We observe that this is a flexible and interepretable way to
model perceptually changing environments. We are in the
process of evaluating our structure mapping on Triggers and
extending it to real-world environments. The main challenge
is in learning object-oriented representation for objects in an
unsupervised manner for complex domains with continuous
action and state spaces. Limited intervention setting and use
of largely available observational data for structure learning
are some interesting future directions for our work.

https://github.com/Information-Fusion-Lab-Umass/causal_transfer_learning
https://github.com/Information-Fusion-Lab-Umass/causal_transfer_learning
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