
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Robust Reinforcement Learning
using Adversarial Populations

Anonymous Authors1

Abstract
Reinforcement Learning (RL) is an effective tool
for controller design but can struggle with issues
of robustness, failing catastrophically when the
underlying system dynamics are perturbed. The
Robust RL formulation tackles this by adding
worst-case adversarial noise to the dynamics and
constructing the noise distribution as the solu-
tion to a zero-sum minimax game. However,
existing work on learning solutions to the Ro-
bust RL formulation has primarily focused on
training a single RL agent against a single ad-
versary. In this work, we demonstrate that us-
ing a single adversary does not consistently yield
good generalization to new dynamics. Instead,
we propose randomly initializing a population of
adversaries and sampling from the population uni-
formly during training. We empirically validate
across robotics benchmarks that the single adver-
sary approach results in overfitting to the current
adversary whereas the multiple adversaries ap-
proach generalizes better to new environments.

1. Introduction
Reinforcement Learning (RL) is a powerful tool for control
design but generally relies upon simulators that may contain
inaccurate dynamics models. To make (RL) control design
viable for deployment, it is necessary to develop techniques
that can guarantee robust performance despite misspecified
models. One approach is to formulate the problem as a zero-
sum game and learn an adversary that perturbs the transition
dynamics (Tessler et al., 2019; Kamalaruban et al., 2020;
Pinto et al., 2017). If a global Nash equilibrium of this
problem is found, then that equilibrium provides a lower
bound on the performance of the policy under some bounded
set of perturbations. In addition to the benefit of removing
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user design once the perturbation mechanism is specified,
this approach is maximally conservative, which is useful for
safety critical applications.

However, the aforementioned literature on learning an ad-
versary predominantly uses a single adversary which we
contend can decrease robustness. Consider a robot trying to
learn to walk forwards while an adversary outputs a force
representing wind. For a fixed, deterministic adversary the
agent can learn to cancel the wind by applying a counter-
vailing force. Once the adversary is removed, the robot will
still apply the compensatory forces and possibly become un-
stable. Stochastic Gaussian policies (which are ubiquitous
in continuous control) offer little improvement: low entropy
policies can be counteracted whereas high entropy policies
endow the robot with the prior that the wind cancels on
average. Under these standard policy parametrizations, we
cannot use an adversary to endow the agent with a prior that
a persistent, strong wind could come from any direction.

To tackle this, we introduce RAP (Robustness via Adversary
Pools): a randomly initialized set of adversaries that we
sample from at each rollout and train alongside the agent.
If the robot learns to cancel any one of the adversaries
effectively, that opens a niche for an adversary to exploit
by applying forces in another direction. As the number of
adversaries increases, the robot is eventually endowed with
the prior that a strong wind could come from any direction
and that it must walk carefully to avoid being toppled over.

Our contributions are as follows:

• Using a set of continuous control tasks, we provide evi-
dence that a single adversary does not have a consistent
positive impact on the robustness of an RL policy while
the use of an adversary population provides improved
robustness across all considered examples.

• We investigate the source of the robustness and show
that the single adversary policy is exploitable by new
adversaries whereas policies trained against randomly
initialized adversaries leads to reduced exploitability.

• We demonstrate that adversary populations can be com-
petitive with domain randomization while avoiding
potential failure modes of domain randomization.
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2. Formalism
Notation. In this work we use the framework of a multi-
agent, finite-horizon, discounted, Markov Decision Pro-
cess (MDP) (Puterman, 1990). The goal for a given
MDP is to find a policy πθ parametrized by θ that max-
imizes the expected cumulative discounted reward Jθ =

E
[∑T

t=0 γ
tr(st, at)|πθ

]
. The conditional in this expres-

sion is a short-hand to indicate that the actions in the MDP
are sampled via at ∼ πθ(st). We denote the agent policy
parametrized by weights θ as πθ and the policy of adversary
i as π̄φi . Actions sampled from the adversary policy π̄φi
will be written as āit. We use ξ to denote the parametrization
of the system dynamics (e.g. different values of friction,
mass, wind, etc.) and the system dynamics for a given state
and action as st+1 ∼ fξ(st, at).

2.1. Baselines

2.1.1. SINGLE MINIMAX ADVERSARY

Related Work. The Robust Markov Decision Process (R-
MDP) formulation views robustness as maximizing perfor-
mance subject to uncertainty sets on the transition dynamics
of an MDP (Nilim & El Ghaoui, 2005; Lim et al., 2013).
One prominent variant of the R-MDP literature is to inter-
pret the perturbations as an adversary and attempt to learn
the distribution of the perturbation under a minimax objec-
tive (Pinto et al., 2017; Tessler et al., 2019).

Objective. In this formulation, the minimax objective be-
comes

min
φ

max
θ

E

[
T∑
t=0

γtr(st, at + αāt)|πθ, π̄φ

]
st+1 ∼ fφ(st, at + αāt)

where α is a hyperparameter controlling the adversary
strength. This formulation is identical to that in (Tessler
et al., 2019; Kamalaruban et al., 2020) where they call it the
Noisy Action Robust MDP. Since the adversary is only able
to attack the agent through the actions, there is a restricted
class of dynamical systems that it can represent; this set
of dynamical systems may not necessarily align with those
accessible via domain randomization.

2.1.2. DOMAIN RANDOMIZATION

Related Work. Domain randomization asks a designer to
explicitly define a distribution of environment dynamics
that the agent should be robust to. For example, (Peng
et al., 2018) varies simulator friction, mass, table height,
and controller gain etc. to train a robot to robustly push
a puck to a target location. Additionally, domain random-
ization has been successfully used to build accurate object
detectors solely from simulated data (Tobin et al., 2017)

and to zero-shot transfer a quadcopter flight policy from
simulation (Sadeghi & Levine, 2016).

Objective. We denote the domain over which ξ is drawn
from as Ξ and use P (Ξ) to denote some probability distri-
bution over ξ. The domain randomization objective is

max
θ

Eξ∼P(Ξ)

[
Est+1∼fξ(st,at)

[
T∑
t=0

γtr(st, at)|πθ

]]

Most commonly, and in this work, the parameters ξ are
sampled uniformly over Ξ.

2.2. RAP: Robustness via Adversary Pools

RAP simply extends the minimax objective by adding uni-
form sampling over a set of adversaries. Denoting π̄φi as
the i-th adversary and i ∼ U(1, n) as the discrete uniform
distribution defined on 1 through n, the objective becomes

min
φ1,...,φn

max
θ

Ei∼U(1,n)

[
T∑
t=0

γtr(st, at, αā
i
t)|πθ, πφi

]

Algorithm 1 Robustness via Adversary Pools
Initialize θ, φ1 · · ·φn using Xavier initialization (Glorot &
Bengio, 2010) while not converged do

for rollout j=1...J do
sample adversary i ∼ U(1, n) run policies πθ, πφi
in environment till termination

end
update θ, φ1 · · ·φn using PPO (Schulman et al., 2017)

end

Related Work. The use of pools of agents/adversaries
is a standard technique in multi-agent settings. Alphas-
tar uses a population of ”exploiter” agents that fine-tune
against the bot to prevent it from developing exploitable
strategies (Vinyals et al., 2019). (Czarnecki et al., 2020)
establishes conditions under which learning in games can
often fail to converge without populations. Closest to our
work, Active Domain Randomization (Mehta et al., 2019)
uses a pool of ”adversaries” to select domain randomiza-
tion parameters. However, they use a Stein Variation Policy
Gradient (Liu et al., 2017) to ensure diversity in their adver-
saries and a discriminator reward instead of the negative of
the agent reward.

3. Experiments
We present experiments on continuous control tasks from
the OpenAI Gym Suite (Brockman et al., 2016; Todorov
et al., 2012). We compare with the existing literature and
evaluate the efficacy of a pool of learned adversaries across
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a wide range of state and action space sizes. We investigate
the following hypotheses:

H1. Agents are more likely to overfit to a single adversary
than a pool of adversaries.

H2. RAP leads to increased robustness over training with
a minimax adversary.

H3. RAP has comparable robustness effects to domain ran-
domization while avoiding optimization challenges
caused by the DR objective.

3.1. Experimental Setup and Hyperparameter
Selection

We experiment with the Hopper, Ant, and HalfCheetah con-
tinuous control environments. Since robustness may not
correspond with optimal training time reward, we adopt the
train-validate-test split from supervised learning. To gener-
ate the validation set, we predefine ranges of mass and fric-
tion coefficients as follows: for Hopper, mass ∈ [0.7, 1.3]
and friction ∈ [0.7, 1.3]; Half Cheetah and Ant, mass
∈ [0.5, 1.5] and friction ∈ [0.1, 0.9]. These values are used
to scale mass and friction of all the joints. We compare
the robustness of agents trained via RAP against agents
trained with: 1) a single minimax adversary, 2) domain
randomization, and 3) PPO without an adversary. The do-
main randomization agent is trained via uniform sampling
of mass, friction coefficients from the predefined ranges. To
generate the test set, we take both the highest and lowest
friction coefficients from the validation range and apply
them to different combinations of individual geoms.

3.2. Results

H1. Analysis of Overfitting
A globally minimax optimal adversary should be unex-
ploitable and perform equally well against any adversary of
equal strength. We investigate the optimality of our policy
by asking whether the minimax agent is robust to swaps of
adversaries from different training runs, i.e. different seeds.
Fig. 1 shows the result of these swaps for the one adver-
sary and three adversary case. The diagonal corresponds to
playing against the adversaries the agent was trained with
while every other square corresponds to playing against ad-
versaries from a different seed. The agents trained against 3
adversaries are significantly more robust on average under
swaps. This suggests that random adversary initializations
are sufficient here to generate less exploitable agents.

H2. Adversary Pool Performance
Fig.2 shows the average reward (the average of ten seeds
across the validation or test sets respectively) for each envi-
ronment. Table 1 gives the corresponding numerical values
and the percent change of each policy from the baseline.

Figure 1. Average cumulative reward under swaps for one adver-
sary training (left) and three-adversary training (right). Each square
corresponds to 20 trials. In the three adversary case, each square is
the average performance against the adversaries from that seed.

Standard deviations are omitted on the test set due to wide
variation in task difficulty; the standard deviation across
tasks is not a particularly meaningful quantity. In all envi-
ronments we achieve a higher reward using RAP of size
three and/or five when compared to the single minimax
adversary case.

For a detailed comparison of robustness across the validation
set, Fig. 3 and Fig. 4 show heatmaps of the performance
across all the mass, friction coefficient combinations for
Hopper and Cheetah. Fig. 3 is an example of a case where
a single adversary actually reduces the robustness of the
resultant policy whereas additional adversaries consistently
increase robustness.

Ant 0 Adv DR 1 Adv 3 Adv 5 Adv
Mean Rew. 2908 3613 3206 3272 3203
% Change 24.3 10.2 12.5 10.2

Hopper 0 Adv DR 1 Adv 3 Adv 5 Adv
Mean Rew. 472 1636 913 1598 1565
% Change 246 93.4 238 231
Cheetah 0 Adv DR 1 Adv 3 Adv 5 Adv

Mean Rew. 5592 3656 5664 6046 6406
% Change -35 1.3 8.1 14.6

Table 1. Average reward and % change from vanilla PPO (0 Adv)
for Ant, Hopper, and Cheetah environments across ten seeds av-
eraged over the holdout test set. Across all environments, we
see consistently higher robustness using RAP than the minimax
adversary. Most robust adversarial approach is bolded.

H3. Effect of Domain Randomization Parametrization
From Fig. 2, we see that in the Ant and Hopper domains,

the oracle achieves the highest transfer reward in the val-
idation set as expected. Interestingly, we found that the
domain randomization policy performed much worse on the
Half Cheetah validation set, despite being trained on the
validation set. Looking at the performance for each mass
and friction combination in Fig. 4, we found that the DR
agent was able to perform much better at the low friction
coefficients and learned to prioritize those values at the cost
of significantly worse performance on average. Naive DR
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Figure 2. Average reward for Ant (top), Hopper (middle), and
Cheetah (left) environments across ten seeds and across the valida-
tion set (left column) and across the holdout test set (right column).
We compare vanilla PPO (0 adv), the domain randomization ora-
cle, and the minimax adversary against RAP of size three and five.
Bars represent the mean and the arms represent the std. deviation.
Both are computed over 20 rollouts for each test-set sample.

Figure 3. Hopper scores across validation set with friction on x-
axis and mass on y-axis. No adversaries (upper left), domain
randomization (upper right), one adversary (bottom left), three
adversaries (bottom right).

parametrizations can cause the policy to exploit subsets of
the randomized domain and lead to a brittle policy. Further-

Figure 4. Half Cheetah scores across validation set with friction
on x-axis and mass on y-axis. No adversaries (upper left), domain
randomization (upper right), one adversary (bottom left), three
adversaries (bottom right).

more, since the validation set is the training set for domain
randomization, its failure to outperform RAP there suggests
additional optimization challenges are occurring. Notably,
the adversary-based methods are not susceptible to the same
parametrization issues.

4. Conclusions
In this work we demonstrate that the use of a single adver-
sary to approximate the solution to a minimax problem does
not consistently lead to improved robustness. We propose a
solution through the use of multiple adversaries (RAP), and
demonstrate that this provides robustness across a variety of
robotics benchmarks. We also compare RAP with domain
randomization and demonstrate that while DR can lead to
a more robust policy, it requires careful parametrization
of the domain. RAP is more general, allowing for use in
domains where appropriate tuning requires extensive prior
knowledge or expertise.

There are some interesting extensions of this work that we
would like to pursue. Our agents are currently memory-less
and therefore cannot perform adversary identification; it
would be worthwhile to see if identification of the adver-
saries improves performance. Our adversaries can also be
viewed as forming a task distribution, allowing them to be
used in continual learning approaches like MAML (Naga-
bandi et al., 2018) where domain randomization is fre-
quently used to construct task distributions. Finally, we
would like to construct a theoretical characterization ex-
plaining why multiple adversaries are beneficial.
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