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Abstract
The ability to predict and plan into the future is
fundamental for agents acting in the world. To
reach a faraway goal, we predict trajectories at
multiple timescales, first devising a coarse plan to-
wards the goal and then gradually filling in details.
In contrast, current learning approaches for vi-
sual prediction and planning fail on long-horizon
tasks as they generate predictions (1) without con-
sidering goal information, and (2) at the finest
temporal resolution, one step at a time. In this
work we propose a framework for visual predic-
tion and planning that is able to overcome both of
these limitations. First, we formulate the problem
of predicting towards a goal and propose the cor-
responding class of latent space goal-conditioned
predictors (GCPs). GCPs significantly improve
planning efficiency by constraining the search
space to only those trajectories that reach the
goal. Further, we show how GCPs can be natu-
rally formulated as hierarchical models that, given
two observations, predict an observation between
them, and by recursively subdividing each part of
the trajectory generate complete sequences. This
divide-and-conquer strategy is effective at long-
term prediction, and enables us to design an effec-
tive hierarchical planning algorithm that operates
in a coarse-to-fine manner. By using both goal-
conditioning and hierarchical prediction, GCPs
enable us to solve visual planning tasks with much
longer horizon than previously possible.

1. Introduction
Intelligent agents aiming to solve long-horizon tasks reason
about the future, make predictions, and plan accordingly.
Several recent approaches [7, 34, 10, 33, 23, 12] employ
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Figure 1. When planning towards faraway goals, we propose to
condition the prediction of candidate trajectories on the goal, which
significantly reduces the search space of possible trajectories (left
vs. middle) and enables hierarchical planning approaches that
break a long-horizon task into a series of short-horizon tasks by
placing subgoals (right).

powerful predictive models [9, 1, 11, 20] to enable agents
to predict and plan in complex environments directly from
visual observations, without needing to engineer a state es-
timator. To plan a sequence of actions, these approaches
usually use the predictive model to generate candidate roll-
outs starting from the current state and then search for the
sequence that best reaches the goal using a cost function (see
Fig. 1, left). However, such approaches do not scale to com-
plex long-horizon tasks [7]. Imagine the task of planning a
route from your home to the airport. The above approaches
would attempt to model all possible routes starting at home
and then search for those that ended up at the airport. For
long-horizon problems, the number of possible trajectories
grows very large, making extensive search infeasible.

In contrast, we propose a planning agent that only considers
trajectories that start at home and end at the airport, i.e.,
makes predictions with the goal in mind. This approach
both reduces prediction complexity as a simpler trajectory
distribution needs to be modeled, and significantly reduces
the planning search space, as depicted in Fig. 1 (center).
Indeed, we can produce a feasible plan simply as a single
forward pass of the generative model, and can further refine
it to find the optimal plan through iterative optimization.

However, modeling this distribution becomes challenging
for long time horizons even with goal-conditioned predic-
tors. A naive method inspired by sequential predictive ap-
proaches would predict future trajectories at a fixed fre-
quency, one step at a time — the equivalent of starting to
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Figure 2. Graphical models for state-space sequence generation: forward prediction (left) and the proposed goal-conditioned predictors
(GCPs). Shaded circles denote observations, white circles denote unobserved latent states. Center: a sequential goal-conditioned predictor
with structure similar to forward prediction. Right: a hierarchical goal-conditioned predictor that recursively applies an infilling operator
to generate the full sequence. All our models leverage stochastic latent states in order to handle complex high-dimensional observations.

plan the route to the airport by predicting the very first foot-
steps. This can lead to large accumulating errors. Moreover,
the optimization problem of finding the best trajectory re-
mains challenging. The sequential planning approaches are
unable to focus on large important decisions as most sam-
ples are spent optimizing local variation in the trajectory.
To alleviate both shortcomings, we propose to predict an
a tree-structured way, starting with a coarse trajectory and
recursively filling in finer and finer details. This is achieved
by recursive application of a single module that is trained
to answer: given two states, what is a state that occurs be-
tween them? This hierarchical prediction model is effective
at long-term prediction and further enables us to design an
efficient long-horizon planning approach by employing a
coarse-to-fine trajectory optimization scheme.

In summary, the contributions of this work are as follows.
First, we propose a framework for goal-conditioned predic-
tion and planning that is able to scale to visual observations
by using a latent state model. Second, we extend this frame-
work to hierarchical prediction and planning, which im-
proves both efficiency and performance through the coarse-
to-fine strategy and effective parallelization. We further
extend this method to modeling the temporal variation in
subtask structure. Evaluated on a complex visual navigation
task, our method scales better than alternative approaches,
allowing effective control on tasks longer than possible with
prior visual planning methods.

2. Goal-Conditioned Prediction
In this section, we formalize the goal-condition predic-
tion problem, and propose models for goal-conditioned
prediction, including both auto-regressive models and tree-
structured models. To define the goal-conditioned prediction
problem, consider a sequence of observations [o1, o2, ...oT ]
of length T . Standard forward prediction approaches
(Fig 2, left) observe the first k observations and syn-
thesize the rest of the sequence. That is, they model
p(ok+1, ok+2, . . . oT−1|o1, o2, . . . ok). Instead, we would
like our goal-conditioned predictors to produce interme-

diate observations given the first and last elements in the
sequence (Fig 2, center and right). In other words, they must
model p(o2, o3, . . . oT−1|o1, oT ). A naive design for goal-
conditioned prediction based on forward auto-regressive
models (GCP-sequential, shown in Fig 2, center) predicts
latent state representations sequentially in chronological or-
der, from the start to the end, with the prediction at each
point in time conditioned on the first and final observations
as well as the previous latent state. In the following we
propose a better goal-conditioned predictors that is able to
scale to very long sequences.

2.1. Goal-Conditioned Prediction by Recursive Infilling

In order to scale goal-conditioned prediction to longer time
horizons we now design a tree-structured GCP model that
is both more efficient and more effective than the naive
sequential predictor.

Suppose that we have an intermediate state prediction opera-
tor p(st|pa(t)) that produces an intermediate latent state
st halfway in time between its two parent states pa(t).
Then, consider the following alternative process for goal-
conditioned prediction depicted in Fig 2 (right): at the begin-
ning, the observed first and last observation are encoded into
the latent state space as s1 and sT , and the prediction op-
erator p(st|pa(t)) generates sT/2. The same operator may
now be applied to two new sets of parents (s1, sT/2) and
(sT/2, sT ). As this process continues recursively, the inter-
mediate prediction operator fills in more and more temporal
detail until the full sequence is synthesized.

We call this model GCP-tree, since it has a tree-like shape
where each predicted state is dependent on its left and right
parents, starting with the start and the goal. GCP-tree fac-
torizes the goal-conditioned sequence generation as:

p(o2, o3, . . . oT−1|o1, oT ) =
∫
p(s1|o1)p(sT |oT )

T−1∏
t=2

p(ot|st)p(st|pa(t))ds2:T−1. (1)
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Figure 3. Samples from GCP-tree on the 25-room data. Left: hierarchical prediction process. At each layer, the infilling operator is applied
between every two frames, producing a sequence with a finer and finer temporal resolution (three layers out of eight are shown). Right:
visualization of the trajectory on the map together with a plan execution (see Section 4.2). Bottom: two image sequences sampled given
the same start and goal (subsampled to 20 frames for visualization). Our model leverages stochastic latent states that enable modeling
multimodal trajectories. See additional video results on the supplementary website sites.google.com/view/video-gcp.

2.2. Latent Variable Models for GCP

We have so far described the latent state st as being a mono-
lithic random variable. However, an appropriate design of
st is crucial for good performance: a purely deterministic st
might not be able to model the variation in the data, while a
purely stochastic st might lead to optimization challenges.
Following prior work [3, 11], we therefore divide st into
ht and zt, i.e. st = (ht, zt), where ht is the deterministic
memory state of a recurrent neural network, and zt is a
stochastic per-time step latent variable. To optimize the re-
sulting model, we leverage amortized variational inference
[18, 26] with an approximate posterior q(z̃|o1:T ), where
z̃ = z2:T−1. The deterministic state ht does not require in-
ference since it can simply be computed from the observed
data o1, oT . The training objective is the following evidence
lower bound on the log-likelihood of the sequence:

ln p(o2:T−1|o1,T )
≥ Eq(z2:T−1|x) [ln p(o2:T−1|o1,T , z2:T−1)]−

βKL [q(z|o1:T ) || p(z2:T−1|o1,T )] . (2)

3. Planning & Control with Goal-Conditioned
Prediction

The GCP model can be directly applied to control problems
since, given a goal, it can produce realistic trajectories for
reaching that goal. However, in many cases our objective

is to reach the goal in a specific way. For instance, we
might want to spend the least amount of time or energy
required to reach the goal. In those cases, explicit plan-
ning is required to obtain a trajectory from the model that
optimizes a user-provided cost function C(ot, . . . , ot′). In
GCPs, planning is performed over the latent variables z
that determine which trajectory between start and goal is
predicted: minz C(g(ot, oT , z)), where g is the GCP model.
We propose to use the cross-entropy method (CEM, [27])
for optimization, which has proven effective in prior work
on visual MPC [7, 23, 24, 25]. We train a neural network
estimator for the expected cost via supervised learning by
randomly sampling two observations from a training trajec-
tory and evaluating the true cost on the connecting trajectory
segment C(ot, . . . , ot′) to obtain the target value. Once a tra-
jectory is planned, we infer the actions necessary to execute
it using a learned inverse model (see Appendix F).

Goal-conditioned hierarchical planning. Instead of opti-
mizing the full trajectory at once, the hierarchical structure
of the GCP-tree model allows us to design a more effi-
cient, hierarchical planning scheme in which the trajectories
between start and goal are optimized in a coarse-to-fine
manner. The procedure is detailed in Algorithm 1. We ini-
tialize the plan to consist of only start and goal observation.
Then our approach recursively adds new subgoals to the
plan, leading to a more and more detailed trajectory. Con-
cretely, we proceed by optimizing the latent variables of the

sites.google.com/view/video-gcp
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Table 1. Image-based control performance on navigation tasks

METHOD 9-ROOM NAV 25-ROOM NAV

SUCC. COST SUCC. COST

GCBC 45% 139.75 7% 402.48
VF [7] 84% 128.00 26% 362.82
OURS 93% 34.34 82% 158.06

OURS (FLAT) 94% 36.00 79% 181.02
OURS (SEQUENTIAL) 91% 50.02 14% 391.99

GCP-tree model g(ot, oT , z) layer by layer: in every step
we sample M candidate latents per subgoal in the current
layer and pick the corresponding subgoal that minimizes
the total cost with respect to both its parents. The best sub-
goal gets inserted into the plan between its parents and the
procedure recurses.

4. Experimental Evaluation
The aim of our experiments is to study the following ques-
tions: (1) Are the proposed visual goal-conditioned predic-
tors able to effectively predict goal-directed long-horizon
trajectories? (2) Is the proposed goal-conditioned hierar-
chical planning method able to solve long-horizon visual
control tasks?

4.1. Goal-Conditioned Video Prediction

We compare the GCP models to prior interpolation meth-
ods in see Tab. 2. We observe that this prior work fails to
learn meaningful long-term dynamics, and instead blend
between start and goal image or predict physically implausi-
ble changes in the scene. In contrast, GCP-sequential and
GCP-tree, equipped with powerful latent variable models,
learn to predict rich scene dynamics between distant start
and goal frames Furthmore, n the longer Human 3.6M and
25-room datasets, the GCP-tree model significantly outper-
forms the GCP-sequential model. Qualitatively, we observe
that the sequential model struggles to take into account the
goal information on the longer sequences, as this requires
modeling long-term dependencies, while the hierarchical
model is able to naturally incorporate the goal information
in the recursive infilling process.

4.2. Visual Goal-Conditioned Planning and Control

Next, we evaluate our hierarchical goal-conditioned plan-
ning approach (see Section 3) on long-horizon visual control
tasks. We test our method on a challenging image-based
navigation task in the 9 and 25-rooms environments de-
scribed in Section 4.1. Given the current image observation
the agent is tasked to reach the goal, defined by a goal im-
age, on the shortest possible path. We evaluate in both the
9-room and the 25-room layout with 100 task instances each.
Successful task execution involves crossing up to three and

up to 10 rooms respectively, requiring planning over hori-
zons of several hundred time steps, much longer than in
previous visual planning methods [6, 7].

We compare hierarchical planning with GCP to visual fore-
sight (VF, Ebert et al. [7]), which optimizes rollouts from an
action-conditioned forward prediction model via CEM[27].
We adopt the improvements to the sampling and CEM proce-
dure introduced in Nagabandi et al. [23]. We also compare
to goal-conditioned behavioral cloning (GCBC, [5]) as a
“planning-free" approach for learning goal-reaching from
example goal-reaching behavior.

In Table 1, we report the average success rate of reaching the
goal room, as well as the average cost, which corresponds
to the trajectory length.1 VF performs well on the easy
task set, which requires planning horizons similar to prior
work on VF, but struggles on the longer tasks as the search
space becomes large. The BC method is not able to model
the complexity of the training data and fails to solve these
environments. In contrast, our approach performs well even
on the long-horizon task set.

We compare different planning approaches in Fig. 5. We
find that samples from the forward prediction model in VF
have low probability of reaching long-horizon goals. Using
GCPs with a non-hierarchical planning scheme similar to
[7, 23] (GCP-Flat) requires optimization over a large set of
possible trajectories between start and goal and can struggle
to find a plan with low cost. In contrast, our hierarchical
planning approach finds plans with low cost by breaking
the long-horizon task into shorter subtasks through multi-
ple recursions of subgoal planning. Using GCP-sequential
instead of GCP-tree for sampling performs well on short
tasks, but struggles to scale to longer tasks (see Table 1),
highlighting the importance of hierarchical prediction.

5. Discussion
We present two models for goal-conditioned prediction:
a standard sequential architecture and a hierarchical tree-
structured variant, where the latter either splits the se-
quence into equal parts at each level of the tree, or into
variable-length chunks via an adaptive binding mechanism.
We further propose an efficient hierarchical planning ap-
proach based on the tree-structure model. All variants of
our method outperform prior video interpolation methods,
and the hierarchical variants substantially outperform the
sequential model and prior visual MPC approaches on a
long-horizon image-based navigation task. Additionally, the
adaptive binding model can discover bottleneck subgoals.

1Since reporting length for failed cases would skew the results
towards methods that produce short, unsuccessful trajectories, we
report a constant large length for failed trajectories.
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Figure 4. Architecture for two-layer hierarchical goal-conditioned
predictor (GCP). Skip connections to first node’s decoder omitted
for clarity.

A. Architecture
We describe how GCP models can be instantiated with deep
neural networks to predict sequences of high-dimensional
observations o1:T , such as videos. The prior p(zt|pa(t)) is
a diagonal Gaussian whose parameters are predicted with a
multi-layer perceptron (MLP). The deterministic state pre-
dictor p(ht|zt, pa(t)) is implemented as an LSTM [13]. We
found that using TreeLSTM [28] as the backbone of the
hierarchical predictor significantly improved performance
over vanilla recurrent architectures. We condition the recur-
rent predictor on the start and goal observations encoded
through a convolutional encoder et = E(ot). The decoding
distribution p(ot|st) is predicted by a convolutional decoder
with input features êt and skip-connections from the en-
coder [30, 3]. The parameters of the diagonal Gaussian
posterior distribution for each node, q(zt|ot, pa(t)), are pre-
dicted given the corresponding observation and parent nodes
with another MLP.

We use a convolutional encoder and decoder similar to the
standard DCGAN discriminator and generator architecture
respectively. The latent variables zn as well as en are 32-
dimensional. All hidden layers in the Multi-Layer Percep-
tron have 32 neurons. We add skip-connections from the
encoder activations from the first image to the decoder for
all images. For the inference network implemented with at-
tention, we found it beneficial to use a 2-layer 1D temporal
convolutional network that adds temporal context into the

latent vectors et before attention. For the recursive predic-
tor that predicts en, we found it crucial for the stability of
the training to activate en with hyperbolic tangent (tanh),
and use group normalization [32]. We observed that with-
out this, the magnitude of activations can explode in the
lower levels of the tree and conjecture that this is due to
recursive application of the same network. We found that
batch normalization [14] does not work as well as group
normalization for the recursive predictor and conjecture that
this is due to the activation distributions being non-i.i.d. for
different levels of the tree. We use batch normalization in
the convolutional encoder and decoder, and use local per-
image batch statistics at test time. Fig. 4 gives a schematic
overview of the recursive prediction architecture.

Hyperparameters. For each method and dataset, we per-
formed a manual sweep of the hyperparameter β in the
range from 1e−0 to 1e−4. The convolutional encoder and
decoder both have five layers. We use the Rectified Adam
optimizer [21, 17] with β1 = 0.9 and β2 = 0.999, batch
size of 16 for GCP-sequential and 4 for GCP-tree, and a
learning rate of 2e−4. On each dataset, we trained each net-
work for the same number of epochs on a single high-end
NVIDIA GPU.

B. Goal-conditioned planning and control

Algorithm 1 Goal-Conditioned Hierarchical Planning
1: Inputs: Hierarchical goal-conditioned predictor g, cur-

rent & goal observation ot, oT , cost function Ĉ
2: Initialize plan: P = [ot, oT ]
3: for d = 1...D do . iterate depth of hierarchy
4: for n = 0...|P | − 1 do
5: z ∼ N (0, I) . sample M subgoal latents
6: osg = g(P [n], P [n+ 1], z) . predict subgoals
7: od,n = argmino∈osg Ĉ(P [n], o) + Ĉ(o, P [n+ 1])
8: INSERT(P, od,n) . insert best subgoal in plan
9: end for

10: end for
11: return P

Algorithm 2 Goal-Conditioned Control
1: Inputs: Goal-conditioned predictor g, inverse model
finv(ot, ot+1), goal observation oT , cost function C,
planning routine PLAN(·)

2: while not done do
3: ôt...ôT = PLAN(g, ot, oT , C)
4: for i = 1...nreplan do
5: at = finv(ot, ôt+i)
6: Execute action at.
7: end for
8: end while



Long-Horizon Visual Prediction and Planning

C. Additional results
We include additional qualitative and quantitative results
here as well as at the supplementary website: sites.
google.com/view/video-gcp.

D. Experimental Setup
Most commonly used video datasets in the literature de-
pict relatively short motions, making them poorly suited for
studying long-horizon prediction capability. We therefore
evaluate on one standard dataset, and two synthetic datasets
that we designed specifically for evaluating long-horizon
prediction. The pick&place dataset contains videos of a sim-
ulated Sawyer robot arm placing objects into a bin. Training
trajectories contain up to 80 frames at 64× 64 px and are
collected using a simple rule-based policy. The Navigation
data consists of videos of an agent navigating a simulated
environment with multiple rooms: we evaluate versions with
9-room and 25-room layouts, both of which use 32× 32 px
agent-centric topdown image observations, with up to 100
and 200 frame sequences, respectively. We collect example
trajectories that reach goals in a randomized, suboptimal
manner, providing a very diverse set of trajectories (details
are in App. E). We further evaluate on the real-world Human
3.6M video dataset [15], predicting 64×64 px frames at full
frequency of 50Hz up to 10 seconds in the future to show the
scalability of our method. This is in contrast to prior work
which evaluated on subsampled sequences shorter than 100
frames (see [4, 3, 31]). Architecture and hyperparameters
are detailed in Appendix, Section A.

E. Data processing and generation
For training GCPs we use a dataset of example agent goal-
reaching behavior. Below we describe how we collect those
examples on the pick&place and navigation tasks and the
details of the Human3.6M dataset.

pick&place. We generate the pick&place dataset using
the RoboSuite framework [8] that is based on the Mujoco
physics simulator [29]. We generate example goal-reaching
trajectories by placing two objects at random locations on
the table and using a rule-based policy to move them into
the box that is located at a fixed position on the right of
the workspace. We sample the object type randomly from
a set of two possible object types, bread and can, with
replacement.

Human 3.6M. For the Human 3.6 dataset, we downsam-
ple the original videos to 64 by 64 resolution. We obtain
videos of length of roughly 800 to 1600 frames, which we
randomly crop in time to 500-frame sequences. We split
the Human 3.6 into training, validation and test set by corre-

spondingly 95%, 5% and 5% of the data.

Navigation. For the navigation task the agent is asked
to plan and execute a path between a given 2D start and
goal position. The environment is simulated using the Gym-
Miniworld framework [2]. We collect goal-reaching exam-
ples by randomly sampling start and goal positions in the 2D
maze and plan trajectories using the Probabilistic Roadmap
(PRM, Kavraki et al. [16]) planner. The navigation problem
is designed such that multiple possible room sequences can
be traversed to reach from start to goal for any start and
goal combination. During planning we sample one possi-
ble room sequence at random, but constrain the selection
to only such sequences that do not visit any room more
than once, i.e. that do not have loops. This together with
the random sampling of waypoints of the PRM algorithm
leads to collected examples of goal reaching behavior with
substantial suboptimality. We show an example trajectory
distribution from the data in Fig. 10. While GCPs support
training on sequences of variable length we need to set an
upper bound on the length of trajectories to bound the re-
quired depth of the hierarchical predictive model and allow
for efficient batch computation (e.g. at most 200 frames for
the 25-room environment). If plans from the PRM planner
exceed this threshold we subsample them to the maximum
lenght using spline interpolation before executing them in
the environment. The training data consists of 10,000 and
23,700 sequences for the 9-room and the 25-room task re-
spectively, which we split at a ration of 99%, 1%, 1% into
training, validation and test.

F. Planning Experimental Setup
For planning with GCPs we use the model architectures
described in Section A trained on the navigation data de-
scribed in Section E. The hyperparameters for the hierarchi-
cal planning experiments are listed in Table 3. We keep the
hyperparameters constant across both 9-room and 25-room
tasks except for the maximum episode length which we
increase to 400 steps for the 25-room task. Note that the
cost function is only used at training time to train the cost
estimator described in Section 3, which we use to estimate
all costs during planning.

To infer the actions necessary to execute a given plan, we
train a separate inverse model at = finv(ot, ot+1) that infers
the action at which leads from observation ot to ot+1. We
train the inverse model with action labels from the training
dataset and, in practice, input predicted feature vectors êt
instead of the decoded observations to not be affected by
potential inaccuracies in the decoding process. We use a
simple 3-layer MLP with 128 hidden units in each layer to
instantiate finv. At every time step the current observation
along with the next observation from the plan is passed

sites.google.com/view/video-gcp
sites.google.com/view/video-gcp
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Table 2. Long-term prediction performance of the goal-conditioned predictors compared to prior work on video interpolation.

DATASET PICK&PLACE HUMAN 3.6M 9 ROOMS NAV 25 ROOMS NAV

METHOD PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

GCP-TREE 34.34 0.965 28.34 0.928 13.83 0.288 12.88 0.279
GCP-SEQUENTIAL 34.45 0.965 27.57 0.924 12.91 0.213 11.61 0.209

DVF [22] 26.15 0.858 26.74 0.922 11.678 0.22 11.34 0.172
CIGAN [19] 21.16 0.613 16.89 0.453 11.96 0.222 9.91 0.150

GCP-FlatVisual Foresight

Layer 1: plan one subgoal

GCP-Hierarchical (ours)

Layer 2: plan two subgoals Layer 3: plan between subgoals

Figure 5. Comparison between planning methods. Trajectories (red) sampled while planning from start (blue) to goal (green). All
methods predict image trajectories, which are shown as 2d states for visualization. Left: visual MPC [7] with forward predictor, middle:
non-hierarchical planning with goal-conditioned predictor (GCP), right: hierarchical planning with GCP (ours) recursively optimizes
subgoals (yellow/red) in a coarse-to-fine manner and finally plans short trajectories between the subgoals. Goal-conditioning ensures
that trajectories reach the long-horizon goal, while hierarchical planning decomposes the task into shorter segments which are easier to
optimize.

Figure 6. Predictions on Human 3.6M. We see that the GCP models
are able to faithfully capture the human trajectory. The optical
flow-based method (DVF) captures the background but fails to
generate complex motion needed for long-term goal-conditioned
prediction. Causal InfoGan also struggles to capture the structure
of these long sequences and produce implausible interpolations.
Full qualitative results are on the supplementary website: sites.
google.com/view/gcp-hier/home.

to the inverse model and the predicted action is executed.
We found it crucial to perform such closed-loop control
to avoid accumulating errors that posed a central problem
when inferring the actions for the whole plan once and then
executing them open-loop.

We separately tuned the hyperparameters for the visual fore-
sight baseline and found that substantially more samples are
required to achieve good performance, even on the shorter

Figure 7. Prior samples from GCP-tree on the four datasets: Hu-
man 3.6, pick&place, 3x3 Maze and 10x10 Maze. Each sequence is
subsampled to 9 frames. Full qualitative results are on the supple-
mentary website: sites.google.com/view/gcp-hier/
home.

9-room tasks. Specifically, we perform three iterations of
CEM with a batch size of 500 samples each. For sampling
and refitting of action distributions we follow the procedure
described in [23]. We use a planning horizon of 50 steps
and replan after the current plan is executed. We cannot use
the cost function from Table 3 for this baseline as it leads
to degenerate solutions: in constrast to GCPs, VF searches
over the space of all trajectories, not only those that reach
the goal. Therefore, the VF planner could minimize the tra-
jectory length cost used for the GCP models by predicting
trajectories in which the agent does not move. We instead
use a cost function that measures whether the predicted
trajectory reached the goal by computing the L2 distance
between the final predicted observation of the trajectory and

sites.google.com/view/gcp-hier/home
sites.google.com/view/gcp-hier/home
sites.google.com/view/gcp-hier/home
sites.google.com/view/gcp-hier/home
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Figure 8. Prior samples from GCP-tree on the Human 3.6M dataset.
Each row is a different prior sample conditioned on the same
information.
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GCP-FlatVisual Foresight GCP-Hierarchical

Figure 9. Comparison of visual planning & control approaches.
Execution traces of Visual Foresight (left), GCP-tree with non-
hierarchical planning (middle) and GCP-tree with hierarchical
planning (right) on two 25-room navigation tasks. Visualized are
start and goal observation for all approaches as well as predicted
subgoals for hierarchical planning. Both GCP-based approaches
can reach faraway goals reliably, but GCP with hierarchical plan-
ning finds shorter trajectories to the goal.

the goal observation.

We run all experiments on a single NVIDIA V100 GPU and
find that we need approximately 30mins / 1h to evaluate all
100 task instances on the 9-room and 25-room tasks respec-
tively when using the hierarchical GCP planning. The VF
evaluation requires many more model rollouts and therefore
increases the runtime by a factor of approximately five, even
though we increase the model rollout batch size by a factor
of 20 for VF to parallelize trajectory sampling as much as
possible.

Figure 10. Example trajectory distributions between fixed start
(red) and goal (green) rooms on the 25-room navigation task. The
example goal-reaching behavior is highly suboptimal, with both
strong multimodality in the space of possible solutions as well as
low-level noise in each individual trajectory.

Table 3. Hyperparameters for hierarchical planning with GCPs on
9-room and 25-room navigation tasks.

Hierarchical Planning Parameters

Hierarchical planning layers (D) 2
Samples per subgoal (M ) 10

Final Segment Optimization

Sequence samples per Segment 5

General Parameters

Max. episode steps 200 / 400
Cost function

∑T−1
t=0 (xt+1 − xt)2
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