
Conditioning of Reinforcement Learning Agents and its
Policy Regularization Application

Arip Asadulaev 1 Igor Kuznotsov 1 Gideon Stein 1 Andrey Filchenkov 1

Abstract

The role of conditioning was studied for super-
vised learning problems (Pennington et al., 2017).
It also was shown that conditioning regulariza-
tion can help to avoid the “mode-collapse” prob-
lem in Generative Adversarial Networks (Odena
et al., 2018). In this paper, we try to answer the
following question: Can information about pol-
icy conditioning help to shape a more stable
and general policy of reinforcement learning
agents? To answer this question, we conduct a
study of conditioning behavior during policy op-
timization. To the best of our knowledge, this
is the first work that research condition number
in reinforcement learning agents. We propose
a conditioning regularization algorithm and test
its performance on the range of continuous con-
trol tasks. Finally, we compare algorithms on
the CoinRun (Cobbe et al., 2019) environment
with separated train end test levels to analyze how
conditioning regularization contributes to agents’
generalization.

1. Introduction
Generalization in Reinforcement Learning (RL) is different
from supervised learning generalization problem (Zhang
et al., 2018). We need specific techniques to avoid overfit-
ting of RL algorithms (Farebrother et al., 2018). Agents
can achieve different scores on the test set while all of them
achieved the same rewards during training. In RL, the test
data performance depends on agent architecture, because
different architectures have different priori algorithmic pref-
erences (inductive biases) (Zhang et al., 2018).

For example, Convolutional Neural Networks (CNNs)
agents are too sensitive to small visual changes and can com-

1ITMO University, Saint-Petersburg, Russia. Correspondence
to: Arip Asadulaev <aripasadulaev@itmo.ru>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

pletely fail due to perturbations (Lee et al., 2020). Such tech-
niques as the first CNNs layer randomization can avoid it
and help to learn robust representations (Lee et al., 2020). In
our paper, to control agents sensitivity to small changes
in the environment, we propose to use agent condition
number regularization.

Conditioning or condition number is the measure that
indicates the proximity of a neural network to the Dynam-
ical Isometry property. Dynamical Isometry is a neural
network property stating that the distance between a net-
work’s inputs is the same as the distance between outputs.
This property can be achieved by having a mean squared
singular value equal to O(1) of a Jacobian input-output
network (Pennington et al., 2017).

For classification problems, was shown that well-
conditioned neural networks could significantly speed up
training (Pennington et al., 2017). The role of condition-
ing was also studied for Generative Adversarial Networks
(GANs) and it was shown that conditioning is causally
related to the generator performance, and a conditioning
regularization can help to avoid the “mode-collapse” prob-
lem (Odena et al., 2018).

Before using conditioning regularization in RL agents, we
conduct a study of the relationship between policy perfor-
mance and conditioning to find justifications for using it
as a regularization. We analyze the behavior of the agent
conditioning on different policies that are set by different
sets of hyperparameters and see a correspondence between
the conditioning and the ratio of achieved rewards.

Based on these observations, we apply condition num-
ber regularization to Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015) and Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) algorithms and
compare their performance on 8 continuous control tasks
in the PyBullet environment (Ellenberger, 2018). In our
experiments, models with regularization outperformed other
models on most of the tasks. To explicitly test how our
regularization affects on agent generalization, we run the
PPO algorithm with conditioning regularization on CoinRun
environments(Cobbe et al., 2019). The results are presented
in Section 3.



Conditioning of Reinforcement Learning Agents and its Policy Regularization Application

Figure 1. PPO rewards and conditioning ψ in PyBullet environments with different hyperparameters. Each curve is obtained by averaging
results of 30 agents (10 for each seed)

Figure 2. PPO rewards and conditioning ψ, in PyBullet environments. Each curve is obtained by averaging results of 30 agents (10 for
each seed).

2. Conditioning of RL Agents
Conditioning Estimation: Getting the mean squared singu-
lar value of a Jacobian input-output network using Singular
Value Decomposition (SVD) is time-consuming. Because
of this, we adapted a technique designed to assess GAN
models conditioning to RL agents for fast conditioning es-
timation. Jacobian Clamping (JC) (Odena et al., 2018) is
an algorithm that computes the condition number of the
generator’s Jacobian and locks it inside the interval where
the Dynamical Isometry property can be achieved.

To compute conditioning in RL agents, we feed two mini-
batches at a time to the agent. The first batch consists of
the real environment states St at timestep t. The second
batch consists of the same states but with some added dis-
turbance δ. Then we estimate how these batches affected
the agent: Jt =

‖πθ(St)−πθ(St+δ)‖
‖δ‖ . After this, we compute

the value ψt that characterizes how close Jt is to the range
λmax, λmin. These values approximately set the desirable
range for model conditioning. We saved these parameters
equal to the range defined previously for GANs (1 and 20).

ψmaxt = (max (Jt, λmax)− λmax)
2
,

ψmint = (min (Jt, λmin)− λmin)
2
,

ψt = ψmint + ψmaxt .

(1)

More details are presented in Algorithm 1 in the Appendix.

Conditioning and Policy Performance: To examine the
relationship between policy and conditioning, we run PPO
with different hyperparameters and random seeds on the four
continuous control tasks Humanoid-v0, Hopper-v0, Ant-v0,
and Reacher-v0. Through these trials, we try to examine
whether ineffective policies are less conditioned. We use
the standard PPO parameters as the optimal configuration



Conditioning of Reinforcement Learning Agents and its Policy Regularization Application

Figure 3. TRPO vs TRPO reg. Rewards and conditioning ψ, in PyBullet environments. Each curve is obtained by averaging results of 30
agents (10 for each seed)

Env Humanoid Hopper Ant Reacher Pendulum Walker Humanoid Flag HalfCheetah
PPO 73.1 106.8 414.1 -13.5 4534.9 55.1 43.6 9.9

PPO reg 73.2 18.6 294.8 -7.4 4978.4 74.2 38.4 941.2
TRPO 165.6 1697.0 1376.8 18.2 6993.6 892.4 98.7 1795.3

TRPO reg 245.8 2001.2 1379.4 17.7 8213.8 1013.5 98.7 1843.3

Table 1. Mean reward over the last 100 optimization steps for TRPO, PPO, PPO reg, and TRPO reg. The mean was computed over 3
random seeds and 10 agents for each seed using optimal policy hyperparameters

and made three adjustments to those parameters to produce
less effective policies.

In each configuration, we use the same minibatch size, the
number of timesteps T , PPO epoch, policy learning rate,
and η. Parameters that were modified are: GAE parameter,
discount (γ), value function (VF) coefficient, VF learning
rate, VF epochs (Schulman et al., 2015; 2017). The sets of
hyperparameters are presented in Table 3 in the Appendix.
We test each setting on 4 PyBullet environments with 3
random seeds and 10 agents for each seed. Results are
presented in Figure 1.

Results Discussion: Our experiments show that the con-
ditioning has similar patterns with the number of received
rewards. On the Humanoid task, we found that the most ef-
fective policy has the lowest conditioning. And furthermore,
parameter 2 model drop of condition number corresponds
to the moment of a sharp increase in rewards for the agent.

The connection between policy and conditioning is not
clearly evident in the Ant task. However, agents with pa-
rameters 2 and 3 that obtained smaller reward values are
more distant from the dynamical isometry property. Further-
more, an interesting observation that is worth noting is that
policies, which are well-performing and gain higher reward
values at the end of the training, are better conditioned, often
even from the first training steps.

Because of environment dynamics, a linear relationship
between the reward curves and the condition number is diffi-
cult to establish. However, in general, based on these exper-
iments, a pattern can be observed: a policy that receives
fewer rewards has less optimal conditioning. Also, turn-
ing back to the privileges that Dynamical Isometry provides
for deep non-linear networks in classification and generation
tasks too, we assume that if an agent is closer to Dynamical
Isometry, it will allow forming a more stable and efficient
policy.

3. Conditioning Regularized Policy
Optimization

In this section, we propose an algorithm that regularizes
the condition number of the agent. To regularize the policy
we simply use the values of conditioning as a penalty. The
example of regularized PPO presented below. We used the
PPO algorithm and added a value of ψ to the surrogate
policy loss:

LCLIP+ψ+V F+S
t (θ) =

Êt
[
LCLIPt (θ) + c1ψ − c2LV Ft (θ) + c3S [πθ] (st)

]
,

(2)

where LCLIP is PPO policy loss. c1 is coefficient for con-
ditioning penalty, LV Ft is a value loss

(
Vθ (st)− V targ

t

)2



Conditioning of Reinforcement Learning Agents and its Policy Regularization Application

Figure 4. PPO and PPO with conditioning regularization. Success rate on CoinRun environment on train and test levels

Levels PPO PPO reg PPO-l2 PPO-l2 reg PPO-D PPO-D reg PPO-IMP PPO-IMP reg
Seen 55 60.7 57.2 61 54.5 60.2 59 68.2

Unseen 14 20 18.5 30.5 19.2 20 26 32.8

Table 2. PPO and PPO with conditioning regularization. Success rate after 50M timesteps on CoinRun environment, on train(seen) and
test(unseen) levels.

with coefficient c2, S [πθ] (st) is policy entropy for state st
multiplied by entropy coefficient c3. Conditioning penalty
can be applied to other algorithms too, in our experiments
we used it for TRPO as well. Condition value used for a
penalty computing on the new policy on PPO and TRPO
algorithm.

Continuous Control Experiments: We conduct experi-
ments of the regularization technique on PPO and TRPO
algorithms. We optimized 30 agents for each task (10
agents for 1 random seed) over 2500 updates (5 mil-
lion timesteps) see Figure 2, 3. We test algorithms on
Humanoid-v0, Hopper-v0, Ant-v0, Reacher-v0, Double
Inverted-Pendulum-v0, Humanoid-Flag-v0, Walker-v0, and
Half-cheetah-v0 environments.

In this test, the hyperparameters setting is equal to the op-
timal one, presented in PPO and TRPO literature (Schul-
man et al., 2015; 2017) for continuous control tasks. For
the TRPO algorithm, we also used mean conditioning of
a trajectory as a penalty for surrogate policy loss. In our
experiments both basic TRPO and regularized one show
better results than PPO. The average rewards for the last
100 updates are shown in Table 1. In all experiments model
with name “reg” is conditioning regularized model. For
experiments, we used the penalty multiplied by a coefficient
c1 equal to 0.001.

Generalization Experiments: Our continual learning
problem was set without explicitly separated training and
testing stages. In generalization experiments, we trained
models on the fixed large-scale set of 500 levels of Coin-
Run (Cobbe et al., 2019) and tested on unseen levels. In
this experiment, we run PPO with l2 and Dropout (Srivas-
tava et al., 2014) regularizations, then we run the same
methods but with additional conditioning penalty. For this
experiment, we use “NatureCNNs” architecture proposed
for tests in (Cobbe et al., 2019). Also, we tested the PPO

method without l2 and dropout regularization but based on
IMPALA (IMP) (Espeholt et al., 2018) architecture.

We noticed a high variance in scores during tests. Due to
that, at evaluation, we increase the number of repeats form
5 as it was used in (Lee et al., 2020) to 20. We trained
models over 50M timesteps, but only on one random seed,
all other settings were equal to (Lee et al., 2020) (Section
4.2). Results are presented in Figure 4 and Table 2. Our
method outperforms PPO in all 4 training scenarios.

4. Discussion and Future Work
In this work, we propose a simple and computationally
inexpensive optimization method for Deep RL. We adapted
a technique called Jacobian Clamping to approximately
estimate conditioning of the agent. We tested our approach
on the PyBullet and CoinRun domains. In our opinion,
extending RL algorithms by conditioning regularization
is a promising research direction. Condition number can
provide important information about the policy, such as the
correctness of hyperparameters or stability.

However, our work is still in progress. To study the role
of conditioning for the generalization problem more thor-
oughly, we plan to conduct a test on the CoinRun envi-
ronment with more timesteps and random seeds. Our ex-
periments show that different architectures conditioning
regularization produces various results. We plan to test
conditioning contribution to other architectures too and run
them on the environments like DeepMind Lab (Beattie et al.,
2016). Also, we plan to compare conditioning regularization
with other methods such as information bottleneck (Goyal
et al., 2019; Galashov et al., 2019; Igl et al., 2019), . Es-
timating conditioning directly using the Jacobian matrix
and SVD would be a very important experiment to examine
conditioning in RL agents too.



Conditioning of Reinforcement Learning Agents and its Policy Regularization Application

References
Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-

wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., Schrittwieser, J., Anderson, K., York,
S., Cant, M., Cain, A., Bolton, A., Gaffney, S., King,
H., Hassabis, D., Legg, S., and Petersen, S. Deep-
mind lab. CoRR, abs/1612.03801, 2016. URL http:
//arxiv.org/abs/1612.03801.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman,
J. Quantifying generalization in reinforcement learn-
ing. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 1282–1289. PMLR,
2019. URL http://proceedings.mlr.press/
v97/cobbe19a.html.

Ellenberger, B. Open-source implementations of openai
gym mujoco environments for use with the openai gym
reinforcement learning research platform. https://
github.com/benelot/pybullet-gym, 2018.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: scalable dis-
tributed deep-rl with importance weighted actor-learner
architectures. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1406–1415. PMLR,
2018. URL http://proceedings.mlr.press/
v80/espeholt18a.html.

Farebrother, J., Machado, M. C., and Bowling, M.
Generalization and regularization in DQN. CoRR,
abs/1810.00123, 2018. URL http://arxiv.org/
abs/1810.00123.

Galashov, A., Jayakumar, S. M., Hasenclever, L., Tiru-
mala, D., Schwarz, J., Desjardins, G., Czarnecki, W. M.,
Teh, Y. W., Pascanu, R., and Heess, N. Information
asymmetry in kl-regularized RL. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?
id=S1lqMn05Ym.

Goyal, A., Islam, R., Strouse, D., Ahmed, Z., Larochelle,
H., Botvinick, M., Bengio, Y., and Levine, S. In-
fobot: Transfer and exploration via the information bot-
tleneck. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=rJg8yhAqKm.

Igl, M., Ciosek, K., Li, Y., Tschiatschek, S., Zhang, C.,
Devlin, S., and Hofmann, K. Generalization in reinforce-
ment learning with selective noise injection and infor-
mation bottleneck. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pp. 13956–13968, 2019.
URL https://arxiv.org/abs/1910.12911.

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Are deep policy gradi-
ent algorithms truly policy gradient algorithms? CoRR,
abs/1811.02553, 2018. URL http://arxiv.org/
abs/1811.02553.

Lee, K., Lee, K., Shin, J., and Lee, H. Network random-
ization: A simple technique for generalization in deep
reinforcement learning. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?
id=HJgcvJBFvB.

Odena, A., Buckman, J., Olsson, C., Brown, T., Olah, C.,
Raffel, C., and Goodfellow, I. Is generator conditioning
causally related to GAN performance? 80:3849–3858,
10–15 Jul 2018. URL http://proceedings.mlr.
press/v80/odena18a.html.

Pennington, J., Schoenholz, S. S., and Ganguli, S. Resurrect-
ing the sigmoid in deep learning through dynamical isom-
etry: theory and practice. CoRR, abs/1711.04735, 2017.
URL http://arxiv.org/abs/1711.04735.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. CoRR,
abs/1502.05477, 2015. URL http://arxiv.org/
abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958, 2014. URL http://dl.acm.org/
citation.cfm?id=2670313.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A study
on overfitting in deep reinforcement learning. CoRR,

http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1612.03801
http://proceedings.mlr.press/v97/cobbe19a.html
http://proceedings.mlr.press/v97/cobbe19a.html
https://github.com/benelot/pybullet-gym
https://github.com/benelot/pybullet-gym
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://arxiv.org/abs/1810.00123
http://arxiv.org/abs/1810.00123
https://openreview.net/forum?id=S1lqMn05Ym
https://openreview.net/forum?id=S1lqMn05Ym
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=rJg8yhAqKm
https://arxiv.org/abs/1910.12911
http://arxiv.org/abs/1811.02553
http://arxiv.org/abs/1811.02553
https://openreview.net/forum?id=HJgcvJBFvB
https://openreview.net/forum?id=HJgcvJBFvB
http://proceedings.mlr.press/v80/odena18a.html
http://proceedings.mlr.press/v80/odena18a.html
http://arxiv.org/abs/1711.04735
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313


Conditioning of Reinforcement Learning Agents and its Policy Regularization Application

abs/1804.06893, 2018. URL http://arxiv.org/
abs/1804.06893.

http://arxiv.org/abs/1804.06893
http://arxiv.org/abs/1804.06893

