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Abstract

Learning from past mistakes is a quintessential
aspect of intelligence. In sequential decision-
making, existing meta-learning methods that learn
a learning algorithm utilize experience from only
a few previous episodes to adapt their policy
to new environments and tasks. Such methods
must learn to correct their mistakes from highly-
correlated sequences of states and actions gen-
erated by the same policy’s consequent roll-outs
during training. Learning from correlated data
is known to be problematic and can significantly
impact the quality of the learned correction mech-
anism. We show that this problem can be mit-
igated by augmenting current systems with an
external memory bank that stores a larger and
more diverse set of past experiences. Detailed
experiments demonstrate that our method out-
performs existing meta-learning algorithms on
a suite of challenging tasks from raw visual
observations. Code and videos are available
at: https://sites.google.com/view/
learn—-from-failures.

1. Introduction

Agents often fail to solve a new decision-making task in
their first attempt. While failures do not provide good re-
wards, they communicate what not to do and often hint at
possible solutions. Analyzing past failures to improve the
current strategy is vital for adapting and solving new tasks.
Because of being memory-less, popular deep reinforcement
learning (DRL) algorithms (Mnih et al., 2015; Silver et al.,
2017; Lillicrap et al., 2015) cannot exploit previous episodes
to adjust their decisions at test time. However, recently pro-
posed methods that learn a learning algorithm (Duan et al.,
2016; Mishra et al., 2017) address this shortcoming by pro-
cessing the history of multiple episodes to select the next
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action. Such meta-learning algorithms can learn from past
failures and have achieved excellent performance on many
challenging partially-observable tasks.

In this work, we utilize two observations to construct a
modified training procedure for meta-learning methods that
learn a learning algorithm. The proposed training scheme
leads to substantial performance gains on tasks that require
recovery from failures. To understand our contributions,
let’s first review the training process of existing methods:
An agent is provided with a set of tasks to solve. Training
happens in trials. In every trial, a training task is randomly
sampled, and the agent acts for a fixed number of steps (say
T). If the agent completes the task or the episode terminates
before T' steps, reset is performed, and a new episode starts.
A trial typically contains multiple episodes.

Current meta-learning algorithms learn a policy that depends
on all previous episodes only in the same trial. Different
episodes in a single trial are the outcome of executing the
policy network with same weights and are correlated. Cor-
related self-generated training data results in instability in
training. To overcome this shortcoming in the context of
meta-learning, we propose having a memory bank for each
task that stores episodes across trials. By storing mistakes
across trials, such memory banks encourage learning of
policies that can recover from a diverse set of failures.

Our second observation is that despite being successful at
a task, it is important to preserve memories of past failures.
Consider the setup where the agent only utilizes memory
of episodes from the same trial. As the agent trains, it will
make fewer mistakes in the training tasks. In the extreme
case of fitting, the agent may succeed in the first episode
of the trial, and as a consequence, the agent’s memory will
be populated only with successful trajectories. Lack of
failures in memory might have the unintended consequence
of making the agent forget how to recover from failures
by the end of the training. We show that this issue can
be mitigated by explicitly storing the most recent failures
(possibly from earlier trials) of the agent. In this paper, we
used the observations of labeling and storing failures across
trials to build a meta-learning algorithm that outperforms
the existing state-of-the-art (Mishra et al., 2017). This was
achieved by constructing task-specific memory banks that
replay trajectories from multiple previous trials of the same
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Figure 1. Policy architecture. The policy starts with an empty
memory bank. An agent executes the policy in a task. If it fails, the
trajectory is added to a memory bank. When the agent performs
the task again, the policy adapts the output based on the informa-
tion from memory. The policy uses the Transformer to extract
information from each trajectory and a gated attention mechanism
to merge the information of multiple trajectories.

task. We validate our method on 2D and 3D navigation
environments, and Procgen environment.

2. Method

Our setup is as follows: An agent is required to solve a
set of tasks M. Training is performed in trials. In each
trial, the agent executes a fixed number of actions, say 7.
A trial typically consists of multiple episodes, where each
episode refers to the trajectory taken by the agent starting
from the initial state until the environment is reset due to
either failure or success of the agent or a timeout. During
training, suppose the agent encounters the task M; for the
j* time (i.e, j'" trial for task M;). Let the set of episodes
in this trial be {7;’;k € K}, where K, the total number
of eplsodes can vary across trials. Let the k'" eplsode
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the reward obtained by the agent at a time step ¢*. Further
assume that the agent is equipped with || M || memory banks,
one for each task: BM:. Each memory bank stores a maxi-
mum of NV trajectories. At every time step in the trial, the
agent chooses actions (a;” ) using the policy,
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where, hi’jl represents the agent’s trajectory in the current
trial until time ¢ — 1 and 6 represents the policy parameters.
The policy mg depends on the current observation, the entire
history of the current trial (hz’] ), and the trajectories stored
in the memory bank (B¢). The policy is optimized to
maximize the sum of rewards in the trial.

The memory bank is populated in the following way: Let
f(7) be a binary function that returns whether the episode

7 results in a success (f(7) = 1) or failure (f(7) = 0). Let
Fii =A{k: f(r7) = 0;k € [1, K]} be the set of failure
episodes in the ]th trial. At the end of the trial, the failure
episodes F*7 are added to the memory bank BM:. If BM:
is out of space, the earliest episodes stored in the memory
are dropped. Figure 1 visually illustrates the policy.

Computing Feature Representation of Trajectories in
the Memory Bank: We use the Transformer to compute
the feature representation of each trajectory in the mem-
ory bank. Let the trajectories in BM: be {7i;n € [1, N]}.
The transformer consists of an encoder that computes in-
formation per time-step of the trajectory and a decoder that
aggregates this information.

e,i = Encoder(®(7,))) vri = Decoder(g, e )

TL

where ® is a function (CNN and MLP layers) that merges
the information of observation, action, and reward at each
time step, e,: € RY*¥ are the embedding vectors for each
time step in the trajectory, g € R¥ is randomly initialized
and learned via back-propagation, and v,: € R¥ is the
embedding of the entire trajectory.

Aggregating Information Across Trajectories in the
Memory Bank: Next, the policy aggregates information
from all trajectories in the memory bank B¢ using multi-
head self-attention (Vaswani et al., 2017) with GRU gat-
ing (Chung et al., 2014; Parisotto et al., 2019). Each trajec-
tory is embedded into a vector of length E as in Section 2,
resulting in a set of trajectory vectors v,.: € RV*F_ This
set is reduced into a single vector m¢ € R that represents
the contribution of the memory.

ml = MultiHead(Q K, V) = MultiHead(v/, ,
= GRU(v), ,m})

where v], = MLP(CNN(ot)) is the embedding vector of
the current observation.

Vi, 1).,.1:)

Encoding Episodic Temporal Information: To encode
information from past steps of the episode, we use multi-
head self-attention mechanism:

Vo, = MLP(MultiHead(v., , v7,,vs,) ® vr, )[—1]

where [—1] refers to feature embedding of the current time
step in inference, @ is the concatenation operator v,, de-
noted is the featurization of current trajectory 7;. Note
that we only encode past trajectory information from the
current eplsode Therefore, in the k'™ episode, b7, =
{otk PN l,rtk ., + in Equation (1). In experiments
without temporal embedding, v,, = MLP(CNN(o;)),
which is shown in Figure D.2 in Appendix D.

Memory-conditioned Policy: The final policy © merges
information from current trial and memory bank. 7 =
MLP [MLP(v,,) & m,| where m, is the feature represen-
tation of the memory BM: . If BM: is empty, m’, = 0.
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3. Experiments

While our method is fully compatible with reinforcement
learning algorithms such as PPO, we use behavior cloning
to train all the policies, to speed up the training.

Baselines: We compare our method against the follow-
ing baselines: (1) SNAIL (Mishra et al., 2017) is a meta-
learning algorithm that accumulates information across
episodes in the same trial as described in Section 2. (2) We
first trained a memoryless base-policy (i.e., a; = mg(0¢)) us-
ing expert demonstrations. At test time, we finetune this pol-
icy after every episode using PPO (Schulman et al., 2017).

3.1. Gridworld

Environment setup: The gridworld is W x W in size and
has X + 1 blocks in different colors (Figure B.1a). The
black block represents the agent. One block is the goal. The
other X — 1 blocks are traps. The agent gets +1 reward if
it reaches the goal, —1 reward if it reaches any trap, and 0
reward otherwise. The color of the goal and the positions of
the blocks vary across tasks. The agent is not provided with
the color of the goal block, which makes the environment
partially-observable. More experiment details are in the
Appendix B.

Gridworld (X =2) Gridworld (X = 3)
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Figure 2. Our methods (Memory, Memory + Temporal) outperform
the SNAIL and PPO finetune baselines on testing environments
in gridworld and miniworld. Mean and standard deviation in the
average accumulated reward across 3 seeds are reported.

Evaluation: Our method is evaluated as follows: At the
beginning of a trial in test time, the memory bank is empty.
The agent acts using its policy, and if an episode fails, the
last frame of the episode (i.e., L. = 1) is added to the mem-
ory bank. The agent rolls out five episodes. SNAIL is eval-
uated in the same way, except that in a manner consistent
with the original work, all frames from all previous episodes
(and not just failures) in the trial are processed to predict the
action. For PPO finetune baseline, the policy is finetuned
with PPO after each episode.

Figure 2 shows that the performance of all methods im-
proves with the number of episodes. Our method (called
Memory) outperforms SNAIL and PPO finetune in testing
environments. Figures 2a,2b compare performance in en-

vironments with one and two traps respectively. While the
performance of SNAIL reduces significantly with an increase
in task complexity, only a modest drop in performance is
observed for our method. This suggests that our method
is superior to the state-of-the-art for more complex tasks.
It can also be seen that Memory + Temporal outperforms
Memory, indicating that additional information obtained
from previous steps of the same episode is useful.

Effect of the length L of trajectories in memory: In the
previous experiments, only the last time step of each trajec-
tory is stored in the memory. In general, it is not known
apriori how many time-steps of an episode should be stored
in the memory bank. It is expected that storing longer tra-
jectories can make learning harder. To see the effect of
trajectory length L, we trained different versions of our sys-
tem, each storing a different number of last L steps of the
episode. Results in Figures 3a,3b show that the performance
of our method is invariant to L. Therefore, our method
does not require knowledge of how many steps of the failed
episode should be stored in the memory.

Effect of Diversity: Our central hypothesis is that training
with diverse failures is a better mechanism for learning to
recover from failures. To investigate how critical is diversity,
we performed ablations under two conditions: (a) using
trials of 80 steps (called normal horizon, NH); (b) trials of
300 steps (called long horizon, LH). The different variants
of our method in these two conditions are:

e NH{LH}.RESET_DIFF: To maximize the diversity of
trajectories stored in the memory bank, on termination
of an episode, the environment is reset to a random task.
As the policy gets updated between trials, the failures
are more likely to be different when the policy generates
them at different training iterations. Hence, the memory
bank will have more diverse failures.

e NH{LH} RESET_SAME: An environment is reset to the
same task throughout the trial following the setup
in (Duan et al., 2016; Mishra et al., 2017). In this case,
the diversity in the memory goes down, because the mem-
ory has a limited capacity, and trajectories from the same
policy are more likely to be similar. If the trial horizon
is longer (LH), the diversity drops even more as more
trajectories will come from the same policy.

e NH{LH}_SNAIL: SNAIL with a normal/long trial hori-
zon.

We can see from Figure 3c that using a memory bank can
indeed significantly boost the learning speed comparing
to SNAIL. We can also see that NH{LH}_ RESET_DIFF
learns much faster than NH{LH} RESET_SAME, which
fits well with our hypothesis. The comparison between
NH_RESET_SAME and LH_RESET_SAME shows that longer
trial horizon with RESET_SAME does lead to significantly
slower learning. However, in case of RESET_DIFF, the
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Figure 3. X = 3. (a): testing performance for different trajectory
length L. (b): learning curves in training for different L. (c):
learning curves for different reset mechanisms.

learning speed is not affected by the trial horizon, because
the memory has enough diversity even if 7' is large. All of
the four variants of our method perform better than SNAIL
(NH_SNATIL and LH_SNATL).

3.2. 3D Miniworld

We also conduct experiments in a 3D navigation environ-
ment. The task of the agent is the same as the gridworld
environment. There are 3 boxes in the room (4m x4m) with
different colors. Only one of the boxes gives +1 reward,
and the other two boxes give —1 reward. The agent’s ac-
tion set is {move forward by 0.3m, turn left by 18°, turn
right by 18°}. The observation is a first-person view as
shown in Figure B.1d. We again use path planning to pro-
vide supervision for policy learning. Figure 4a shows that
our methods perform much better than the baselines. The
advantage of using a memory bank is even more salient
in this case. As the agent only has the first-person view
of the scene (Figure B.1d), the agent needs intra-episode
information to efficiently search and move towards the goal,
which is verified by the performance gap between Memory
and Memory + Temporal.

3.3. Procgen

Beyond object collection tasks, we tested our method on a
few games (CoinRun, Climber, and Ninja) from the Procgen
benchmark (Cobbe et al., 2019). For each video game, all
models are trained on 200 levels (tasks) with supervised
learning using expert demonstrations, which in turn were
collected by training a PPO (Schulman et al., 2017) policy.
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Figure 4. Test-time performance on miniworld and three video
games from Procgen. Our method outperforms SNAIL on all the
environments.

We evaluate performance on 100 held-out levels. Figure 4b,
4c, 4d shows that performance of all methods improves with
number of testing episodes and our algorithm consistently
outperforms SNAIL. This suggests that memory-bank and
marking failures are very useful additions to the class of
meta-learning systems that learn a learning algorithm.

It is interesting to note that in all these games PPO finetune
is competitive with our method and even outperforms us on
CoinRun. We suspect the reason for this extremely good
performance is the biases present in these games. For in-
stance, out of 15 possible actions, only two actions jump
and move-right are sufficient to solve CoinRun. The learned
policy exploits this and puts most of the probability mass
on these two actions. If the agent fails, its errors can be
corrected by interchanging jump and move-right actions
at a few critical points. We hypothesize that gradient de-
scent can easily find this solution because negative rewards
decrease the probability of actions in the previous rollout,
which naturally increases the probability of the only other
alternative action in the next rollout.

4. Discussion

In this paper, we apply the idea of replaying failures to the
meta-learning setting where an agent learns to avoid making
the mistakes that it has made in the past. We show that
having a memory bank of the experience across multiple
previous trials and explicitly replaying the past failures can
significantly improve learning speed as well as the test-time
performance.
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