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Abstract

Humans can master a new task within a few tri-
als by drawing upon skills acquired through prior
experience. To mimic this capability, hierarchi-
cal models combining primitive policies learned
from prior tasks have been proposed. However,
these methods fail short comparing to the human’s
range of transferability. We propose Hierarchi-
cal Alternative Training (HAT), which leverages
the hierarchical structure to train the combination
function and adapt the primitive polices alterna-
tively, to efficiently produce a range of complex
behaviors on challenging new tasks. We demon-
strate that our method outperforms recent policy
transfer methods by combining and adapting these
reusable primitives in tasks with continuous ac-
tion space. The experiment results further show
that HAT provides a broader transferring range.

1. Introduction

Reinforcement learning (RL) has lots of success in vari-
ous applications, such as game playing (Brockman et al.,
2016; Silver et al., 2017; Mnih et al., 2015), robotics control
(Tassa et al., 2018; Coumans & Bai, 2016-2019), molecule
design (You et al., 2018), and computer system optimiza-
tion (Mao et al., 2019a;b). Typically, researchers use RL
to solve each task independently and from scratch, which
makes RL confronted with sample efficiency. However,
compared with humans, the transferability of RL is limited.
Especially, humans can learn to solve complex continuous
problems (both state space and action space are continu-
ous) efficiently by utilizing prior knowledge. In this work,
we want agents to efficiently solve the complex continu-
ous problem by exploiting prior experiences that provide
structured exploration based on effective representation.

To this end, we formulate transfer learning in RL as follow-
ing. We train a policy with one of the RL optimization strate-
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gies on the pre-training task. Then, we intend to leverage
the policy to master the transferring task. However, trans-
fer learning in RL may face some fundamental problems.
First, unlike supervised learning, the transitions and trajec-
tories are sampled during the training phase based on the
interacted policy (Rothfuss et al., 2019). Since the reward
distributions are different between the pre-training task and
the transferring task, directly finetuning the pre-training pol-
icy on transferring tasks may make the agent perform biased
structured exploration and get stuck in many low reward
trajectories. Second, dynamics shifts between pre-training
and transferring tasks may induce the pre-training policy
to perform unstructured exploration (Clavera et al., 2019;
Nachum et al., 2019). Although domain randomization (To-
bin et al., 2017; Nachum et al., 2019) in the pre-training
phase may mitigate this problem, we prefer the pre-trained
policies to gradually fit the transferring tasks consistently.

In this work, we propose Hierarchical Alternative Training
(HAT), a training strategy for transfer learning with hierar-
chical policy. Our pre-training method leverages existing
hierarchical structure in the policy consisting of a combi-
nation function and a set of primitive policies. Notice that
we do not use reference data since we expect our method
to be generally applicable to all tasks. In many cases, such
as flying creatures (Won et al., 2018), Laikago robot! or
D’Kitty robot?, reference data is hard to obtain. During the
transferring phase, we alternatively train the combination
function and the primitive policies. This training proce-
dure makes the training not only stable but also flexible in
exploration. When training the combination function and
freezing primitives in the transferring phase, it utilizes the
benefit of the hierarchical structure that abstracts the explo-
ration space. When training the primitives and fixing the
combination function, the primitives can be adapted to the
transferring task. In our experiment, we demonstrate that
training hierarchical policy with HAT significantly increases
sample efficiency compared to previous work (Peng et al.,
2019). Moreover, our method provides a better transferring
range.

Uhttp://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1
*https://www.trossenrobotics.com/d-Kitty.aspx
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2. Preliminaries

We consider a multi-task RL framework for transfer learn-
ing, consisting of a set of pre-training tasks and transfer-
ring tasks. An agent is trained from scratch on the pre-
training tasks. Then it applies any skills learned during
pre-training to the transferring tasks. Our objective is to
obtain and leverage a set of reusable skills learned from the
pre-training tasks to enable the agent to be more effective
at the later transferring tasks. We denote s as a state, a as
an action, r as a reward, and T as a trajectory consisting
of actions and states. Each task is represented by a dy-
namics model ;41 ~ p(Si+1]|8¢, ar) and a reward function
re = r(s¢, at, g), where g is the task-specific goal such as
the target location that an agent intends to reach and a terrain
that an agent needs to pass. In multi-task RL, goals {g} are
sampled from a distribution p(g). Given a goal g, a trajec-
tory 7 = {so, ao, S1, ..., ST} with time horizon 7' is sampled
from a policy 7(als, g). Our objective is to learn an opti-
mal policy 7* that maximizes its expected return J(mw) =
Egmp(g),rmpn (r]g) [Bi=o7 7] Over the distribution of goals
p(g) and trajectories p.(7|g), where v € [0, 1] is the dis-
count factor. The probability of the trajectory 7 is calculated
as px(719) = p(s0) [1{Zg P(se41lst, a)m(arse, g), where
p(s0) is the probability of the initial state so. In transfer
learning, despite the same state and action space, the goal
distributions, reward functions, and dynamics models in pre-
training and transferring tasks are subjected to be different.
The difference between the pre-training and transferring
tasks is referred to as the range of transfer.

3. Method

We will first introduce our core hierarchical training method,
Hierarchical Alternative Method (HAT), in section 3.1.
Then, we show how to apply HAT to the existing hierar-
chical policy in section 3.2.

3.1. Hierarchical Alternative Training
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Figure 1. The hierarchical policy architecture.

We propose a training strategy, hierarchical alternative train-
ing (HAT). It can be combined with an existing hierarchical
policy framework to increase the transferring efficiency and
extend the transferring range. Let’s consider a basic form of

a hierarchical policy (see figure 1). It will contain: 1) A set
of primitive policies 7y, (als, g), 7y, (als, g), ..., 7o, (a|s, g)
with parameters 6 .,,, and each primitive is an independent
policy that output action distribution base on s and g. 2)
A combination function Cy(s, g) with parameter ¢ outputs
weight w;.,,, where w; specifies the importance of primi-
tive mg,. F'(T1.n, W1y specifies how to combine primitives
with specified weight wy.,,. Typically, the larger the weight
w;, the more contributions from primitive 7, .

Algorithm 1 Applying HAT
Initialize 6;.,, and ¢;
while not converged do
Disable the gradient of primitives;
Enable the gradient of combination function ;
fori =1topdo
train combination function ¢;
end for
Disable the gradient of combination function;
Enable the gradient of primitives;
fori =1topdo
train primitives 61.,;
end for
end while

During the pre-training phase, we train the hierarchical pol-
icy end-to-end. The behavior of the policy will be decom-
posed into a set of primitives, and the combination function
will learn to compose the primitives to form a complete
behavior. During the transferring phase, we reinitialize the
combination function and leverage the primitive directly
from pre-trained in the pre-training task. We first update
the combination function and freeze the primitives. This
views the combination function as the policy that learns to
combine the primitives to master the transferring task. As
illustrated in the motivating example, the range of transfer
between the pre-training and transferring tasks is likely to
limit the performance of only training the combination func-
tion. Therefore, after p iterations, we switch to finetune
the primitives with the combination function fixed. This
method makes the primitives become more applicable to the
transferring task. After p iterations, we freeze primitives
and train combination function again. This is to prevent
the skills in the primitives to be severely forgotten during
finetuning. The strategy is repeated several times until the
hierarchical policy converges (see algorithm 1).

3.2. Applying HAT to the Policy Architecture

We leverage the multiplicative combination rule (Peng et al.,
2019)
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Figure 2. Environments used to evaluate our method. The first row
is the pre-training tasks, and the second row is the transferring
tasks.

where 7y, (als) is the primitive policies and w.,, is gen-
erated from combination function Cy (s, g). Z(s, g) is the
partition function that ensures the composite distribution
is normalized. F'(my,,, ,w1.,) multiplies the primitive poli-
cies along with their corresponding weights. The weights
determine the importance of each primitive policies to com-
pose the action distribution at a time step, with a larger
weight representing a larger influence. Note that to make
the primitives task-agnostic (i.e., more transferable), we
restrict the primitives 7g, . (als) to only get s. During the
pre-training phase, the combination function and primitive
policies are trained in an end-to-end fashion. During the
transferring phase, we train the combination function and
primitive policies alternatively as described in section 3.1.

4. Experiments

In this section, we introduce the evaluation tasks in section
4.1 and list the baselines that we intend to compare in section
4.2. The results of the methods evaluated in our environ-
ments are discussed in section 4.3. Aside from option-critic
(Bacon et al., 2017), all the experiments are trained with
PPO (Schulman et al., 2017) and Generalized Advantage
Estimation (GAE) (Schulman et al., 2016). We further show
that our method has a broader transferring range compared
with other baselines in section 4.4.

4.1. Tasks

We consider three agents (see figure 2): quadruped (ant)
with 12 DoF and 8 actuators; 2dwalker with 6 DoF and 6
actuators; halfcheetah with 6 DoF and 6 actuators. All the
task is built with PyBullet (Coumans & Bai, 2016-2019).

4.1.1. PRE-TRAINING TASKS

AntContinuousGoal: An ant needs to move to the target
position which is the task-specific information g, and the
target direction is sampled from [_T”, %] with radius 5. Once

the ant reaches the goal position, the goal position will be
re-sampled in the same way.

WalkerTerrain: A 2d walker needs to move forward on
terrain, and the slope of the terrain is sampled from a specific
range. The task-specific information g is the terrain in front
of the agent. Therefore, the 2d walker needs to learn how to
walk smoothly on planes with different slopes.

HalfCheetahWall: A halfcheetah needs to move forward,
and there is a wall every 3 to 5 meters. The height of the
wall is sampled from a specific range. The task-specific
information g is the terrain in front of the agent. Therefore,
the halfcheetah needs to climb or jump over the wall.

4.1.2. TRANSFERRING TASKS

TransAntContinuousGoal: An ant needs to move to the
target position, and the target position is sampled from [%’r,
%’r] with radius 5. The target direction does not overlap
with that of the pre-training task. Once the ant reaches the
goal position, the goal position will be re-sampled in the
same way. Therefore, in this case, the difference between

pre-training task and transferring task is goal distribution
p(g)-

WalkerHalfSlope: A 2d walker needs to move forward in
terrain, but there are cliffs between each plane. Therefore,
the 2d walker should be robust to these cliffs. Therefore,
in this case, the differences are goal distribution p(g) and
dynamics p(s;t1|s¢, at).

HalfCheetahTerrace: A halfcheetah needs to move for-
ward on a terrace that is formed with lots of horizontal
platforms with target speed, so it needs to jump or climb up
to the higher platform and does not fall to the lower platform.
The difference in height between two platforms is sampled
from a specific range. Therefore, in this case, the differences
are goal distribution p(g) and dynamics p(s¢41]s¢, at).

4.2. Baselines

We define the baselines that will be discussed in the fol-
lowing sections. Scratch: We directly train a policy on the
transferring task, and it is one of the most straightforward
methods to tackle a task. Finetune: We first train a policy in
the pre-training task. Then, we directly finetune the policy
in the transferring task. It is the other most straightforward
method to tackle a task. MCP (Peng et al., 2019): We
end-to-end train a hierarchical policy with multiplicative
combination rule in pre-training task. During the transfer-
ring phase, we freeze the primitives trained in pre-training
task and only reinitialize and train the combination function.
Option-Critic (Bacon et al., 2017): We learn intra-option
policies, termination conditions of options, and the policy
over options in pre-training task. One option works for
several timesteps until being stopped by the termination
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Figure 3. Performance of different transferring methods. For better visualization, we use exponential moving average to smooth the
learning curve, and each learning curve is grouped with three random seeds. From these figures, we show that our method achieves better

performance than other methods.
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Figure 4. We show that our method achieves better transfer range
than other methods. (a): the goal position sampling range for each
task. From task 1 to task 4, the task difference between transferring
task and pre-training task becomes larger. (b): the result of each
method on different transferring tasks.

function. Then, it is directly finetuned to the transferring
task. MLSH (Frans et al., 2018): We learn a hierarchi-
cal policy where the master policy switches between a set
of sub-policies in the pre-training task. The master policy
chooses a sub-policy every N timesteps, and the selected
sub-policy is then executed for N timesteps. During the
transferring phase, we freeze the sub-policies and only train
the master policy, which makes the master policy learn how
to utilize the fixed primitives.

4.3. Comparisons with Baseline

We run our method and other baselines in the three continu-
ous problems described in the previous section. For figure
3, we find that HAT outperforms other methods in the trans-
ferring phase. MCP tends to perform well at the beginning
of training, which may be caused by hierarchical abstrac-
tion. However, freezing primitive policies may restrict the
transferring range of MCP, which induces that MCP cannot

converge to a better result. Since HAT allows the primitives
to adapt to the transferring task, it achieves significantly
better reward the fastest among all the baseline algorithms.
With the knowledge learned from the pretraining tasks, fine-
tuning performs better than training from scratch. This is
because training from scratch is required to learn every-
thing, including task distribution and dynamics. However,
HAT significantly outperforms finetuning by striking a bet-
ter trade-off between combining the primitives to efficiently
exploring the new task and gradually adapting the primitive
to the new task. MLSH doesn’t perform well in our transfer
task since it chooses the primitives serially, which makes
the primitives not decomposed well.

4.4. Transferring Range

To demonstrate the transferring range of each method, we
redesign the goal position of AntContinuousGoalEnv (see
figure 4 (a)). The goal position of the pre-training task is
sampled from an arc where the center angle is [_T““, %]
and radius 5 meters. As for transferring tasks, we design
four transferring tasks, and the goal position of these four
transferring tasks are sampled from [%”, %r], [z, %’T],
[%”, %ﬂ] and [%’r, %‘], respectively. In other words, the four
transferring tasks are ordered by the scale of the difference
between the pre-training task and transferring tasks.

In figure 4 (b), We find that HAT has a larger transferring
range compared with other methods. Note that we report the
performance at 1 million environment steps. All the other
transferring methods get worse as exploration direction be-
comes different. As the exploration direction difference
increases, MCP may perform worse than finetuning. It may
be caused by fixing the primitive policies, which may limit
the ability to adapt to the transferring task. The experiment
result implies that HAT has a better transferring range than
other methods.
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