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Abstract
Deep Neural Networks (DNN) have been a cru-
cial driver behind the recent successes of deep re-
inforcement learning (RL). While allowing for a
tremendous scale-up to high dimensional domains
like robot-control or GO they have also introduced
various difficulties into the training process, that
have been addressed by methods like double Q-
learning to stabilize learning. However, the role
of the weights is normally limited to a storage
object. This work connects the information in
the weights via a PAC-Bayes bound to generali-
sation across a distribution of environments and
showcases maximum-entropy and exploration via
noise injection as places to exploit the connection
of information in weights and activations.

1. Introduction
Deep reinforcement learning has recently seen successes on
a variety of tasks (Mnih et al., 2015; Vinyals et al., 2019).
DNNs are a common building block across all these works.
Their common use is restricted as being the function ap-
proximator that approximates the value-function or policy
in an algorithm. The use of DNNs for RL comes at the
expense of additional challenges in training combated for
example by double Q-learning (van Hasselt et al., 2015).
Empirical evidence relates the flatness of minima to the gen-
eralisation properties in supervised learning (Hinton and van
Camp, 1993; Hochreiter and Schmidhuber, 1997). Recently
(Achille et al., 2019) relate the information encoded in the
weights of a DNN via a PAC-Bayes bound to its general-
isation properties. This results in a training objective that
is at the same time an upper bound on the test error. In-
spired from this connection of information in the weights of
a DNN and the generalisation properties we extend this anal-
ysis to RL. We begin with related work before introducing
different information types in weights and activation’s. Sub-
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sequently we define the complexity of a policy for a given
environment and give PAC-Bayes generalisation bounds for
distributions of tasks. We conclude by using this perspec-
tive to take a look at max-ent RL and exploration by adding
noise schemes.

2. Related Work
The bottleneck theory, of learning an encoding with as few
bits about the input as possible while retaining good per-
formance, was introduced by (Tishby et al., 2000), who
pointed out in (Tishby and Zaslavsky, 2015) that the bottle-
neck principle is also applicable to deep neural networks.
While optimizing the IB objective directly is intractable,
(Alemi et al., 2016) introduced the variational information
bottleneck (VIB) to obtain a tractable lower bound, which
was shown to improve the robustness of image classifica-
tion models. The variational autoencoder (Kingma and
Welling, 2013) can likewise be interpreted as an autoen-
coder equipped with a VIB.

(Tirumala et al., 2019) apply the IB in activation’s in RL and
develop a hierarchical learning schema. (Igl et al., 2019) use
the IB in activation’s as regularisation and study the impact
on generalisation. (Goyal et al., 2019) use the IB to discover
options. (Rakelly et al., 2019) train a task inference network
with an IB that is at meta-test-time used for task-inference.

(Achille et al., 2019) connect information in weights and ac-
tivation’s of a DNN relate in addition information in weights
to generalisation via PAC-Bayes bounds. We extend their
analysis to the RL case. (Majumdar et al., 2018) consider
policy learning across a distribution of environment’s and
derive an algorithm based on directly optimizing the PAC-
Bayes bound resulting from a reduction of policy learning
to supervised learning. In comparison to their work we ex-
plicitly draw the connection between the PAC-Bayes bound
and the information in the weights as well as a extension to
structured task-families.

Max-ent RL is a paradigm maximizing instead of the normal
reward an augmented reward r(s, a) +H(π(·|s)) (Ziebart
et al., 2008; Haarnoja et al., 2018). A topic of ongoing
research is why and when max-ent RL works well. (Ey-
senbach and Levine, 2019) conjecture that it helps in cases
where the reward function is chosen in an adversarial way
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from within a certain class of reward functions.

3. Background
3.1. Reinforcement Learning

A Markov Decision Process (MDP, (Bellman, 1957)) is a
quintuple (S,A, γ,P,R). Here S and A stand for the sets
of states and actions respectively, such that for st, st+1 ∈ S
and at ∈ A: P(st+1|st, at) is the probability that the sys-
tem/agent transitions from st to st+1 given action at and
R(at, st, st+1) is a reward obtained by an agent transition-
ing from st to st+1 via at and γ the discount factor.

A policy πθ : S → A is a (possibly randomized) mapping
(parameterized by θ ∈ Rd, in our case weights of a DNN)
from S to A. The goal of RL is to find parameters θ of
a policy πθ such that an agent applying it in the environ-
ment given by a fixed MDP maximizes total discounted
reward Eπ

∑H
t=1 γ

tr over given horizon H . In this paper
we consider MDPs with finite horizons.

In multi-task learning RL (MT-RL) we are given a distri-
bution of tasks E that are either given in form of a dataset
of environments {E1, . . . , EN} or a distribution to sam-
ple from E ∼ pE . The goal is to learn a policy, more
specifically, parameters or a distribution of parameters of
an optimal policy, maximizing the expected sum of rewards
across all the environments in E . Let JE(θ) denote the sum
of expected reward for using policy π with parameters θ in
environmentE and analogous JE(θ) = EE∼E JE(θ) the ex-
pected sum of rewards over tasks of distribution E . The goal
of learning is to find: maxθ JE(θ) = maxθ EE∼E JE(θ).

Denoting by Θ the space of all possible parameters, T ∼ Θ
a distribution over parameters and θ ∼ T a concrete re-
alisation. We can write θ ∼ Θ where we identify T
with the Dirac distribution with probability mass at θ.
Then we can formulate the learning objective to learn
an optimal parameter distribution as: maxT ∈Θ JE(θ) =
maxT ∈Θ EE∼E Eθ∼T JE(θ).T can be realized as the dis-
tribution of the parameters of a Bayesian network.

3.2. Information Theory

We refer to A.1 for definitions on elementary information
theory and A.2 for a definition of fisher information (FI).

Consider a neural network X → Z → Y with input X ,
intermediate encoding Z and output Y . The encoding to
the intermediate layer is given by a parametric encoder
f(z | x, θ), so z = fθ(x). We wish to strive for sim-
plicity, thus we seek an encoding that is maximally infor-
mative about the target while satisfying an upper bound
(Ic) on the encoded information about the input. This
can be formalized, measuring the amount of encoded in-
formation in the activations as MI I(Z;X), via the in-

formation bottleneck(IB) objective (Tishby et al., 2000):
maxθMI(Z;Y ; θ)s.t.MI(X;Z; θ) ≤ Ic. it is possible to
optimize for an embedding being minimally informative
about the input, by setting Ic = 0.

If we have a DNN and measure the information in the acti-
vation’s a natural next step is to consider the information
in the weights. A possible measure of the information in
the weights is to consider weights θ ∼ Q, where Q is a dis-
tribution over weights as in a bayesian NN. Defining a prior
P over the weights the encoding length of the weights could
be computed as MI(Q;P ). (Achille et al., 2019) argue that
instead of considering the encoding length of the weights
one should rather care about effective information in the
weights, as weights, that when perturbed, yield almost the
same loss as before don’t carry a lot of information.

Recalling the definition of Z, z = fw(x) as an intermediate
layer of a DNN and the motivation of effective information
in the weights, that small perturbations in uninformative
weights don’t change the loss, (Achille et al., 2019)(Def.4.1)
define effective Information in the activation’s informally
as the information that are not destroyed by a small pertur-
bation in the weights: MIeff (x; z) = MI(x; fw+n(x)).

(Achille et al., 2019) connect in their proposition (4.2) the
information in activation and weights. They find that, un-
der some technical conditions, i) that if the FI in the weights
(FIW) goes to 0, the FI in the activation’s (FIA) goes to 0
as well and ii) the effective information between input and
activation decreases as the FIW decreases. This suggests,
that reducing the information the weights contained about
the training set and optimization, for example by increasing
the noise in SGD, decreases the mutual information between
input and activation’s at train and test time.

3.3. SGD as minimizing a energy functional

Let T = η/B be the temperature, with step size η and
batch size B. Empirically, it has been observed, that SGD
prefers to converge to flatter minima as the temperature
increases [see remark 3.9 in (Achille et al., 2019) for a
discussion]. This suggests that it minimizes a free energy
F(θ) = L(θ)+ T

2 log |F (θ)|, with loss L. As in RL we seek
to maximize the reward instead of minimizing a loss we can
define a new free energy as JE(θ) = JE(θ)− T

2 log |F (θ)|
that is now maximized.

3.4. Shannon and FI in the weights

Prop. 3.5, remark 3.6 and remark 3.7 in (Achille et al.,
2019) implies informally that in the limit of an uninfor-
mative prior (λ → ∞) for P (θ) = N (0, λ2I) the only
remaining term in the Shannon information in the weights
MI(Q(θ|W );P (θ)) are the log-determinant of the FI and
a log λ term.
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4. Using information in the weights
IBs in activation’s were commonly used in RL. We ex-
tend this to a Lagrangian containing the information in
the weights. This amounts to an information bottleneck
(IB) minimizing the amount of encoded information in the
weights subject to the constraint that the policy obtains still
a high reward.

4.1. Complexity of a task

The policy might contain weights that are not crucial for
the subsequent action, if a weight configuration θ where
perturbed to θ′ = θ+ ∆θ and JE(θ) ≈ JE(θ′) this weights
contain basically no useful information about the policy
for task E. Thus we do not simply care about the bits of
information encoded about the bits but rather about the
effective information about about environment E. Fol-
lowing (Achille et al., 2019) we define the complexity of an
environment E at level β with prior distribution P (θ) and
post-training-distribution Q(θ|E) as:

Cβ(E,P,Q) = E
θ∼Q(θ|E)

[−JE(θ)]+βKL(Q(θ|E)‖P (θ)).

(1)
For any fixed β there is a Q∗ minimizing the task complex-
ity. The complexity involving Q∗ is called the effective
information in the weights for environment E at level
β. Note that we minimize the negative return plus the
information in the weights which is equivalent to maxi-
mizing the return minus information in the weights. The
complexity of a task distribution E , Cβ(E , P,Q) is defined
analogous. Choosing a time dependent centroid prior, i.e.
P (θt) = 1/N

∑N
i=1Q(θt−1|Ei) recovers the elastic aver-

aging SGD objective (Zhang et al., 2014).

equation 1 takes the form of an information Lagrangian
between the return of the policy with parameters θ and the
Shannon information in the weights with information target
zero. Using the result from 3.4 implies in particular to the
Lagrangian involving the return and the FIW. This equals
in particular the free energy expression for a reinforcement
learning problem.

5. Generalisation in Multi Task Learning
We begin by restating the reduction of the control policy
learning problem (which equals the MT) to the supervised
learning problem by (Majumdar et al., 2018) in table 5.
The return is the discounted sum of rewards obtained by

Supervised Learning MT-RL

Input Data: x ∈ X Environment: E ∈ E
Hypothesis: fθ : X → Y Rollout: πθ : E → (S ×A)H

Loss: l: Θ×X → R Return: C: Θ× E → R

following policy πθ in environment E ∈ E with horizon H .
Policy parameters θ are updated by any RL algorithm based
on rollout-data of environment E in order to maximize the
sum of rewards. Single task RL is recovered by choosing
E as singleton E. Given a task distribution E consisting of
train and test tasks we give a PAC-Bayes bound to connect
the information in the learned weights and the return on the
training tasks to the return on the test tasks.
Theorem 5.1. ((McAllester, 2013)(2), (Achille et al.,
2019)(3.2) Under certain technical conditions (see the ap-
pendix for a full statement)for fixed β > 1/2, δ > 0,
prior weight distribution P (θ), learned weight distribution
Q(θ|Etrain) we have with probability at least 1− δ over the
samples of E that:

Jtest(Q) ≥ 1

1− 1
2β

[Eθ∼Q [JEtrain
(θ)]

− β
N

(
KL(Q‖P ) + log

1

δ

)
,

(2)

where Jtest(Q) is the average return of policy with weights
θ ∼ Q on the test tasks Etest.
Real-world tasks do not come from a massive distribu-
tion, they follow rather a hierarchical structure. Thus
it is more realistic to have a set of different tasks, each
one occurring in different variations. An example of this
structure are the Metaworld (Yu et al., 2019) benchmark
ML10 and ML45. ML10 allows for the decomposition
ML10 = {MLi}10

i=1 into ten separate tasks, where each
individual task MLi represents a distribution of tasks due
to varying starting and goal positions. The plain policy
learning objective (eq. 3.1) considers only one task distribu-
tion we extend, by identifying for example MLi = Ei, the
policy learning problem to hierarchical task distributions
M = {E1, . . . EM} where it becomes: maxT ∈Θ JE(θ) =
maxT ∈Θ EE∼Ei EEi∼M Eθ∼T JE(θ).For this we can again
bound the expected test error:
Theorem 5.2. (McAllester, 2013)(4), (Achille et al.,
2019)(3.2) Let M be a distribution over tasks, Ei ∼ M
we get the following bound over all possible data sets:

Jtest(Q) ≥ 1

1− 1
2β

[
E
Ei∼M

[
E
θ∼Q

[JEi(θ)]

]
− β

N
KL(Q‖P )

]
,

(3)
This means that minimizing the task complexity
Cβ(Etrain, P,Q) does not only maximize the return
on the training set but also a lower bound on the return on
the test set of environments. The PAC-Bound optimization-
method developed by (Majumdar et al., 2018) could be
applied to optimize this objective directly.

6. Max-ent RL and information in weights
Using the property MI(X;Y ) = H(Y )−H(Y |X) it be-
comes apparent that maximum entropy RL π(a|s) is up to
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a constant equivalent to minimizing the mutual informa-
tion MI(a|s). We have argued, that SGB minimizes a free
energy of the form −JE(θ) + T

2 log|F (θ)|.

We have further seen the connection of information in
weights and activation’s and the fact that information in
the weights going to zero drives the fisher-information and
the effective information in the activation’s to zero. We have
shown that reducing the effective information in the weights
helps generalisation.

We analyse this FIW - effective information in activation’s
max-ent RL chain of reasoning by empirically logging
the FIW and the negative log likelihood of the policy dur-
ing training of a Soft Actor Critic (SAC) (Haarnoja et al.,
2018). It is intractable to compute the full FIW of the policy
F = Es

[
∇w log πw(a|s)∇w log pw(a|s)T

]
. As a tractable

approximation, we resort to log-likelihood and FIW over the
replay buffer F = Es∼B

[
∇θ log πθ(a|s)∇θ log pθ(a|s)T

]
.

Figure 1. The median of FI (left) and log(π(at|st)) (right) over
the different episodes for a SAC trained on HalfCheetah, evaluated
over 3 seeds. Different colors denote different batch-sizes.

Figure 1 shows in the left plot the median of FIW and in the
right plot the median of log(π) against the episode number
over 3 different seeds. Different colored lines correspond to
different batch-sizes. Figure 1 conveys two messages. At
the beginning of the FIW is expanding rapidly, correspond-
ing to the encoding of the training data and the learning
algorithm. As training continues there are fewer and fewer
new information to encode and a contraction in the amount
of the FI can be observed, corresponding to the optimisation
towards flat minima. The expansion timing is comparable
to the log probability of the taken actions that increases
first and flattens subsequently. This flattening on a certain
entropy level corresponds to a continuing compression of
the information. Figure 2 in the appendix shows the me-
dian average discounted return. A curve of return minus
log prob would show a similar dynamics as reward minus
FIW. Thus we see empirically, that max-ent RL optimizes
simultaneously the max-ent RL and the FIW Lagrangian
objective.

Secondly, the choice of the optimization algorithm has a
significant impact upon the learning behavior, remember
in particular the temperature T = η/B in the energy func-
tional. In figure 1 we plot the fisher for multiple different
batch sizes and see indeed that a larger batch-size corre-

sponds to a lower temperature, resulting in a larger FIW.

We have shown in that minimizing the information in the
weights improves generalisation. Furthermore, we have
seen that minimizing the information in the activation via
max entropy RL is an effective way to reduce the FIW,
which in turn is a bound on the generalisation performance.
This suggests that max-ent RL maximizes a lower bound
performance over the domain of test environments form the
training distribution which lends support to the suggestion
of (Eysenbach and Levine, 2019) that max-ent helps by tar-
geting adversarialy chosen reward functions. We conjecture
that the empirical success of max-ent RL is due to directly
optimizing an objective involving the return and the infor-
mation in activation’s (thus indirectly the information in the
weights), rather than normal RL with SGD where the weight
information minimization is only implicitly present in the
energy minimisation formulation of SGD.

7. Conclusion and Future Work
The connection of information in weights and activation’s
allows one to draw connections between different concepts.
This is exemplified at the example of adding noise for explo-
ration. Adding noise to the action can be seen as a form of
reducing the information in activation’s while adding noise
in parameter space can be seen as a direct way of reducing
the FIW, as it enforces the policy to learn weights of low cur-
vature. Future work includes exploring further connections
through an information in the weights lens, in particular in
meta learning.

While it is known that the minimizing the information in the
weights drives also the information in the activation’s to 0
there is a lack of a result in the reverse direction. Intuitively
it is however clear that if the information in the activation’s
are minimized the information in the weights, which corre-
spond to all previous data and the learning algorithm, should
also be minimized. Future work is necessary to investigate
different types of information in activation’s and weights.

As the computational cost of the entropy regularisation is
lower than of the computation of mutual information in the
activation, which is in turn, cheaper than computing the
information in the weights it remains to be seen if any of the
different information Lagrangian’s of the reasoning chain
of quantities bounded against each other, allows for more
effective optimisation, of the information in the weights
governing generalisation, than max-ent RL.

In this work, we have drawn a connection between the
information in activation’s and weights. We have related the
information in the weights and generalisation properties via
a PAC-Bayes bound. We hope to inspire the community to
watch and exploit the weights of the networks in the learner
more intensively.



Watch your Weight Reinforcement Learning

References
Achille, A., Paolini, G., and Soatto, S. (2019). Where is the

information in a deep neural network?

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.
(2016). Deep variational information bottleneck.

Bellman, R. (1957). A Markovian decision process. Journal
of Mathematics and Mechanics, 6(5):679–684.

Cover, T. M. and Thomas, J. A. (1991). Elements of infor-
mation theory.

Eysenbach, B. and Levine, S. (2019). If maxent rl is the
answer, what is the question?

Goyal, A., Islam, R., Strouse, D., Ahmed, Z., Larochelle,
H., Botvinick, M. M., Bengio, Y., and Levine, S. (2019).
Infobot: Transfer and exploration via the information
bottleneck. ArXiv, abs/1901.10902.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
and Levine, S. (2018). Soft actor-critic algorithms and
applications. ArXiv, abs/1812.05905.

Hinton, G. E. and van Camp, D. (1993). Keeping the neural
networks simple by minimizing the description length of
the weights. In COLT ’93.

Hochreiter, S. and Schmidhuber, J. (1997). Flat minima.
Neural Computation, 9:1–42.

Igl, M., Ciosek, K., Li, Y., Tschiatschek, S., Zhang, C.,
Devlin, S., and Hofmann, K. (2019). Generalization in
reinforcement learning with selective noise injection and
information bottleneck.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational Bayes. CoRR, abs/1312.6114.

Majumdar, A., Farid, A., and Sonar, A. (2018). Pac-bayes
control: Learning policies that provably generalize to
novel environments.

McAllester, D. A. (2013). A pac-bayesian tutorial with a
dropout bound. ArXiv, abs/1307.2118.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. (2015). Human-level
control through deep reinforcement learning. Nature,
518:529–533.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine, S.
(2019). Efficient off-policy meta-reinforcement learning
via probabilistic context variables. In ICML.

Tirumala, D., Noh, H., Galashov, A., Hasenclever, L., Ahuja,
A., Wayne, G., Pascanu, R., Teh, Y. W., and Heess, N.
(2019). Exploiting hierarchy for learning and transfer in
kl-regularized rl.

Tishby, N., Pereira, F. C., and Bialek, W. (2000). The
information bottleneck method.

Tishby, N. and Zaslavsky, N. (2015). Deep learning and the
information bottleneck principle. 2015 IEEE Information
Theory Workshop (ITW), pages 1–5.

van Hasselt, H., Guez, A., and Silver, D. (2015). Deep
reinforcement learning with double q-learning.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu,
M., Dudzik, A. J., Chung, J., Choi, D. H., Powell, R. W.,
Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M.,
Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P.,
Jaderberg, M., Vezhnevets, A. S., Leblond, R., Pohlen, T.,
Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine,
T. L., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring,
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