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Abstract

The current dominant paradigm in sensorimo-
tor control, whether imitation or reinforcement
learning, is to train policies directly in raw action
spaces. This forces the agent to make decisions
at each point in training, and limits scalability
to complex tasks. In contrast, classical robotics
research has exploited dynamical systems as pol-
icy representations to learn behaviors via demon-
strations. These techniques, however, lack the
flexibility provided by deep learning and have re-
mained under-explored in such settings. In this
work, we begin to close this gap and embed dy-
namics structure into deep neural network-based
policies by reparameterizing action spaces with
differential equations. We propose Neural Dy-
namic Policies (NDPs) that make predictions in
trajectory distribution space as opposed to raw
control spaces. The embedded structure allows us
to perform end-to-end policy learning in both rein-
forcement and imitation learning setups. We show
that NDPs achieve state-of-the-art performance
on many robotic control tasks in simulation, as
well as on digit writing using demonstrations.

1 Introduction
Consider an embodied agent tasked with throwing a ball
into a bin. Not only does the agent need to decide where and
when to release the ball, but also reason about the whole
trajectory that it should take such that the ball is imparted
with the correct momentum to reach the bin. This form
of reasoning is necessary to perform many such everyday
tasks. Common methods in deep learning for robotics tackle
this problem either via imitation or reinforcement. How-
ever, in most cases, the agent’s policy is trained in raw
action spaces like torque, joint angle, or end-effector po-
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Figure 1: Vector field induced by NDPs. The goal is to draw a
planar digit (4). The dynamical structure in NDP induces a smooth
vector field in trajectory space. In contrast, a vanilla policy has to
reason individually in different parts.

sition, which forces the agent to make decisions at each
time step of the trajectory instead of making decisions in the
trajectories space itself (see Figure 1 (left). But then how
do we reason about trajectories as actions?

A good trajectory parameterization is one that is able to
capture a large set of agent’s behaviors or motions while
being physically plausible. In fact, a similar question is also
faced by physicists while modeling physical phenomena in
nature. Several dynamical systems, in science ranging from
motion of planets to that of pendulums, are described by
differential equations of the form ÿ = m−1f(y, ẏ), where
y is the generalized coordinate, ẏ and ÿ are time derivatives,
m is mass, and f is force.

Can a similar parameterization be used to describe the be-
havior of a robotic agent? Indeed, classical robotics has
leveraged this connection to represent task specific robot
behaviors for many years. In particular, dynamic move-
ment primitives (DMPs) (Schaal, 2006; Ijspeert et al., 2013;
2002; 2003) have been one prominent approaches in this
area. Despite their successes, they haven’t been explored
much beyond behavior cloning paradigms. This is partly
because these methods tend to be sensitive to parameter
tuning and are not as flexible or as generalizable as current
end-to-end deep learning based approaches.

In this work, we propose to bridge this gap by em-
bedding dynamics structure into deep neural network-
based policies such that the agent can directly learn in
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Figure 2: Given an observation from the environment, st, our Neural Dynamic Policy generates parameters w (weights of basis functions)
and g (goal for the robot) for a forcing function fθ . An open loop controller then uses this function to outputs a set of actions for the robot
that are executed in the environment, collecting future states and rewards for training.

the space of physically plausible trajectory distributions
(see Figure 1(right)). Our key insight is to reparameter-
ize the action space in a deep policy network with non-
linear differential equations corresponding to a dynam-
ical system and train it end-to-end using reinforcement
learning (RL) or imitation learning.

We propose Neural Dynamic Policies (NDPs) to allow em-
bedding desired dynamical structure as a layer in deep net-
works. The parameters of the dynamical system are then
predicted as outputs of the preceding layers in the architec-
ture conditioned on the input. The ‘deep’ part of the pol-
icy then only needs to reason in the lower-dimensional
space of building a dynamical system that then lets the
overall policy easily reason in the space of trajectories.
In this paper, we employ the aforementioned DMPs as the
structure for the dynamical system and show its differen-
tiability, although they only serve as a design choice for
our early work here and can easily be swapped for a dif-
ferent differentiable dynamical structure. We expand on
alternatives later in the discussion section.

We evaluate NDPs for both imitation as well as reinforce-
ment learning. We show that NDPs can utilize high-
dimensional inputs like images via imitation learning to
accomplish a digit writing task. We show how to train
NDPs with RL across several continuous control tasks in
simulation. NDPs exhibit state-of-the-art performance in
several tasks when compared to multiple baselines.

2 Neural Dynamic Policies (NDPs)

2.1 Modeling Trajectories with Dynamical Systems

It is common in classical robotics to represent movement
behaviors with dynamical systems. Specifically, consider
the second order differential equation structure imposed
by Dynamic Movement Primitives (Ijspeert et al., 2013;
Schaal, 2006). Let the state of the robot be y, velocity ẏ and
acceleration ÿ (either in joint-angle or end-effector space).
Given a desired goal state g, the behavior is represented as:

ÿ = α(β(g − y)− ẏ) + f(x), ẋ = −ax (1)

where α, β are global parameters that allow critical damping.
f is a non-linear forcing function which captures the shape
of trajectory and operates over x which serves to replace
time dependency across trajectories, making the system time
invariant, and evolves via a first-order linear system.f is
usually a design choice. We use a sum of weighted Gaussian
radial basis functions (Ijspeert et al., 2013) shown below:

f(x, g) =

∑
ψiwi∑
ψi

x(g − y0), ψi = e(−hi(x−ci)
2) (2)

where i indexes over n, the number of basis functions. Coef-
ficients ci = e

−iαx
n , hi = n

ci
are horizontal shift and width

of each basis function. This set of nonlinear differential
equations induces a smooth trajectory distribution that acts
as an attractor towards a goal position (see Figure 1). We
now combine this dynamical structure with deep neural net-
work based policies in an end-to-end differentiable manner.

2.2 NN Layer Parameterized by a Dynamical System

We embed a dynamical system described by the DMP equa-
tion (1) in a Neural Network. There are two key parameters
that define the behavior of the dynamical system from Sec-
tion 2.1: basis function weights w = {w1, . . . , wi, . . . , wn}
and goal g. NDPs employ a neural network Φ which takes
an unstructured input s (not to be confused with robot state
y) and predicts the parameters w, g of the dynamical system.
These predicted w, g are then used to solve the second order
differential equation (1) to obtain system states {y, ẏ, ÿ}.
Depending on the difference between the robot’s coordinate
system for y and desired action a, we may need an inverse
controller Ω(.) to convert y to a, i.e., a = Ω(y, ẏ, ÿ). For
instance, if y is in joint angle space and a is torque control,
we use robot’s inverse dynamics controller as Ω(.).

As summarized in Figure 2, NDPs are defined as
π(a|s; θ) , Ω

(
DE
(
Φ(s; θ)

))
where DE(w, g) → {y, ẏ, ÿ}

denotes solution of the differential equation 1. The forward
pass of π(a|s) involves solving the dynamical system and
backpropagation requires the system to be differentiable.
We now show how we differentiate through the dynamical
system to train the parameters θ of NDPs.
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Figure 3: Imitation (supervised) learning results on test images of
digit writing task. Given an input image (left), the output action is
the end-effector position. We find that trajectories output by NDPs
(ours) are dynamically smooth and more accurate than baselines

2.3 Differentiating through a Dynamical System

To train NDPs, estimated policy gradients must flow from
a, through the parameters of the dynamical system w and
g, to the network Φ(s; θ). At any time t, given the previous
state of robot yt−1 and velocity ẏt−1 the output of the DMP
in Equation (1) is given by the acceleration

ÿt = α(β(g − yt−1)− ẏt−1 + f(xt, g) (3)

Through Euler integration, we can find the next velocity and
position after a small time interval dt

ẏt = ẏt−1 + ÿt−1dt, yt = yt−1 + ẏt−1dt (4)

We can use these relationships as well as Equations (2)-(4)
to compute gradients of the trajectory from the DMP with
respect to w and g. In practice, we can use all m robot
states y to obtain actions, or sub-sample k ∈ 1,m actions.
This allows robot operation at much higher frequencies (.5-
5KHz) than the environment (usually 100Hz).

2.4 NDPs for Imitation and RL

Training NDPs in imitation learning setup is rather straight-
forward. Given a sequence of input {s, s′, . . . }, NDP’s
π(s; θ) outputs a sequence of actions a, a′ . . .. In our ex-
periments, s is the high dimensional image input. Let the
demonstrated action sequence be τtarget, we just take an L2
loss between the predicted sequence and ground truth.

We now show how an NDP can be used as a policy, π in the
RL setting. As discussed in Section 2.3, NDP samples k ac-
tions for the agent to execute in the environment given input
observation s. One could use any underlying RL algorithm
to optimize the policy. In this paper, we use Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017) and treat a
independently when computing the policy gradient for each
step of the NDP rollout and backprop via reinforce objective.
There are two choices for value function critic V π(s): either
predict a common value function for all the actions in k-step
rollout or predict different critic values for each step in the
rollout. We found that the latter works better in practice.
We call this multi-action critic architecture and predict k
different estimates of value using k-heads on top of critic
network. Later, in the experiments we perform ablations

Method Train Test (held-out)

CNN 10.42 ± 5.26 10.59 ± 4.63
CNN-DMP (Pahic et al., 2018) 9.44 ± 4.59 8.46 ± 8.45

NDP (ours) 0.70 ± 0.36 0.74 ± 0.34

Table 1: Imitation learning on digit writing task. We report mean
loss across digit classes. Input is the image of digit and outputs are
end-effector positions. NDP significantly outperforms baselines.

over the choice of k. To further create a strong baseline
comparison, as we discuss in Section 3.2, we also design
and compare against a variant of PPO to predict multiple
actions using our multi-action critic architecture.

Inference with NDPs: In the case of inference, NDP uses
policy π once every k environment steps, hence takes

⌈
H
k

⌉
forward passes. In real world settings, due to large over-
head, reducing inference time can help decrease overall time
costs. Additionally, deployed systems are not as powerful as
those used to train RL methods on simulators, so inference
costs end up accumulating. Furthermore, as discussed in
Section 2.3, the rollout length of NDP can be more densely
sampled at test-time than at training allowing the robot to
produce smooth and dynamically stable motions. Compared
to about 100Hz frequency of the simulation, in practice our
method can make decisions much faster at about .5-5KHz.

3 Experimental Evaluation

3.1 Imitation (Supervised) Learning

To evaluate NDPs in imitation learning setup, we perform
the task of learning to write digits using a 2D end-effector.
The goal is to train a planar robot to trace the digit. The
output action is the robot’s end-effector position, and super-
vision is obtained via ground truth trajectories. We compare
NDPs to a regular behavior cloning policy parameterized
by a CNN and the prior approach which maps image to
DMP parameters (Pahic et al., 2018) (dubbed, CNN-DMP).
CNN-DMP (Pahic et al., 2018) trains a single DMP for the
whole trajectory and requires supervised demonstrations,
in contrast to NDPs, which can generate multiple DMPs
across time. We present qualitative results for this setup in
Figure 3 as well as quantitative results in Table 1, which
reports trajectory reconstruction loss. NDP outperforms
both CNN and CNN-DMP (Pahic et al., 2018) drastically.
NDP also produces much higher quality and smoother re-
constructions as shown in Figure 3. This shows how our
method can efficiently capture dynamic motions.

3.2 Reinforcement Learning

We evaluate our approach on dynamic environments include
Throwing and Picking (Ghosh et al., 2017). We also evalu-
ate on quasi-static tasks such Pushing, from the Meta-World
(Yu et al., 2019) task suite, as well as a setup that requires
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Figure 4: Evaluation of RL setup for continuous control tasks. Y axis is success rate and X axis denotes number of environment samples.
Our method (pink) uses k = 5 steps per DMP. We compare against PPO (Schulman et al., 2017) (green), a multi-action version of PPO
(blue), which also outputs 5 actions at a time, VICES (Martin-Martin et al., 2019) (gray) and DYN-E (Whitney et al., 2019) (yellow).

(a) Throwing (b) Picking (c) Pushing (d) 50 Tasks

Figure 5: Environment snapshot for different tasks used in ex-
periments. (a,b) are adapted from (Ghosh et al., 2017) while (c-f)
tasks are adapted from (Yu et al., 2019)

learning all 50 tasks (MT50) jointly (see Figure 5). In con-
trast to imitation learning where dynamic rollout length of
NDP is high (k = 300), we set k = 5 in RL because the re-
ward becomes too sparse if k is very large. Figure 4 shows
the results from RL experiments on the tasks described
above. We compare NDP PPO (Schulman et al., 2017).
NDP is able to operate the robot world at a higher frequency,
while observing the environments once every k steps while
acting at every step. As described in Section 2.4, we com-
pare to PPO-multi, which predicts multiple actions using our
multi-action critic architecture. All methods are compared
in terms of environment samples observed. We also com-
pare to Variable Impedance Control in End-Effector Space
(VICES) (Martin-Martin et al., 2019) and Dynamics-Aware
Embeddings (DYN-E) (Whitney et al., 2019). VICES learns
to output parameters of an Impedance (or PD) controller
directly. DYN-E, using a forward prediction model, learns
a lower-dimensional action embedding.

Experimental results show that our method, NDP, outper-
forms SOTA methods such as PPO. Our method sees gains
in both efficiency and performance in most tasks. The final
task of training jointly across 50 Meta-World tasks is too
hard for all methods. Nevertheless, NDP attains a higher ab-
solute performance but doesn’t show efficiency gains. PPO-
multi, performs well in some cases (Pushing) but is inconsis-
tent in its performance, failing completely at times (Picking).
Our method also outperforms VICES (Martin-Martin et al.,
2019) and Dyn-E (Whitney et al., 2019). VICES is slightly
successful throwing, but suffers in more complex settings
due to a large action space dimensionality. DYN-E, on the
other hand, performs well on tasks such as Pushing, which
has simpler contacts, but fails to scale to complex environ-
ments. Through these experiments, we show the diversity
and versatility of NDPs. It is able to reason in a space of

physically meaningful trajectories, but it does not lose the
advantages and flexibility other policy setups have.

4 Related Work
Various methods in the field of control and robotics have em-
ployed dynamical systems to create more structured learn-
ing. Most of these (Rana et al., 2020; Ravichandar et al.,
2017) use dynamical systems to model demonstrations, but
do not tackle generalization or go beyond imitation. Previ-
ous works have proposed and used DMPs (Schaal, 2006;
Ijspeert et al., 2013; Kober and Peters, 2009) for robot con-
trol, but have mostly focused on learning from demonstra-
tion. Recently, DMPs have been used in the context of
deep learning, for example by Pahic et al. (2018), however
they are only used as single DMPs representing trajecto-
ries, for imitation. Work has been done in representing
dynamical systems (Conkey and Hermans, 2019; Ude et al.,
2010; Calinon et al., 2010; Cheng et al., 2020; Huang et al.,
2019), however these tackle problems that require domain
knowledge. Many works have made use of action param-
eterization, such incorporating DMPs as options into RL
(Daniel et al., 2016; Parisi et al., 2015), using controller
parameters as actions ((Martin-Martin et al., 2019)) or learn-
ing an action embedding (Whitney et al., 2019). However,
these methods are either not flexible to multiple tasks or do
not reason at a trajectory level, and thus do not scale.

5 Discussion
Our method attempts to bridge the gap between classical
robotics and control and recent approaches in deep learning
and deep RL. We propose a novel re-parameterization of
action spaces via a Neural Dynamic Policies, a set of poli-
cies which impose the structure of a dynamical system on
action spaces. The use of DMPs in this work was a design
choice within our architecture which allows for any form of
dynamical structure that is differentiable. One can setup a
dynamical structure such that it explicitly models and learns
various aspects of the dynamical system, such as the metric,
potential, and damping. While this brings advantages in
better representation it also brings challenges in learning.
We leave these directions for future work to explore.
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Caldwell. Kernelized movement primitives. The Interna-
tional Journal of Robotics Research, 2019. 4

Auke J Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning
attractor landscapes for learning motor primitives. In
NeurIPS, 2003. 1

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Move-
ment imitation with nonlinear dynamical systems in hu-
manoid robots. In ICRA. IEEE, 2002. 1

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter
Pastor, and Stefan Schaal. Dynamical movement prim-
itives: Learning attractor models for motor behaviors.
Neural Computation, 2013. 1, 2, 4

Jens Kober and Jan Peters. Learning motor primitives for
robotics. In ICRA, 2009. 4

Roberto Martin-Martin, Michelle A. Lee, Rachel Gardner,
Silvio Savarese, Jeannette Bohg, and Animesh Garg. Vari-
able impedance control in end-effector space: An action
space for reinforcement learning in contact-rich tasks.
IROS, 2019. 4

Rok Pahic, Andrej Gams, Aleš Ude, and Jun Morimoto.
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