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Abstract

Capturing the structure of a data-generating pro-
cess by means of appropriate inductive biases can
help in learning models that generalize well and
are robust to changes in the input distribution.
While methods that harness spatial and tempo-
ral structures find broad application, recent work
(Goyal et al., 2019) has demonstrated the poten-
tial of models that leverage sparse and modular
structure using an ensemble of sparingly interact-
ing modules. In this work, we take a step towards
dynamic models that are capable of simultane-
ously exploiting both modular and spatiotemporal
structures. We accomplish this by abstracting the
modeled dynamical system as a collection of au-
tonomous but sparsely interacting sub-systems.
The sub-systems interact according to a topol-
ogy that is learned, but also informed by the spa-
tial structure of the underlying real-world system.
This results in a class of models that are well
suited for modeling the dynamics of systems that
only offer local views into their state, along with
corresponding spatial locations of those views.
On the tasks of video prediction from cropped
frames and multi-agent world modeling from par-
tial observations in the challenging Starcraft2 do-
main, we find our models to be more robust to the
number of available views and better capable of
generalization to novel tasks without additional
training, even when compared against strong base-
lines that perform equally well or better on the
training distribution.

1. Introduction
Many spatiotemporal complex systems can be abstracted
as a collection of autonomous but sparsely interacting sub-
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systems, where sub-systems tend to interact if they are in
each others’ local vicinity in some sense. As an illustrative
example, consider a grid of traffic intersections, wherein
traffic flows from a given intersection to the adjacent ones,
and the actions taken by some “agent”, say an autonomous
vehicle, may at first only affect its immediate surroundings.
Now suppose we want to forecast the future state of the
traffic grid (say for the purpose of avoiding traffic jams).

There is a spectrum of possible strategies to model the sys-
tem at hand. On one end of it lies the most general strategy:
namely, one that calls for considering the entirety of all
intersections simultaneously to predict the next state of the
grid (Figure 1c). The resulting model class can in principle
account for interactions between any two intersections, irre-
spective of their spatial distance. However, the number of
interactions such models must consider does not scale well
with the size of the grid, and the strategy might be rendered
infeasible for large grids with hundreds of intersections.

On the other end of the spectrum is a specialized strategy
that involves abstracting the dynamics of each intersection
as an autonomous sub-system, and having each sub-system
interact only with other sub-systems associated with the
four (or more) neighboring intersections (Figure 1c). The
interactions may manifest as messages that one sub-system
passes to another and possibly contain information about
how many vehicles are headed towards which direction,
resulting in a collection of message passing entities (i.e., sub-
systems) that collectively model the entire grid. By adopting
this strategy, one assumes that the immediate future of any
given intersection is affected only by the present states of the
neighboring intersections, and not some intersection at the
opposite end of the grid. The resulting class of models scales
well with the size of the grid, but is possibly unable to model
certain long-range interactions that could be leveraged to
efficiently distribute traffic flow.

The spectrum above parameterizes the extent to which the
spatial structure of the underlying system being modeled
is incorporated into the design of the model. The former
extreme ignores spatial structure altogether, resulting in a
class of models that can be expressive but whose sample
and computational complexity do not scale well with the
size of the system. The latter extreme results in a class of
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(a) Fully localized sub-systems. (b) Middle ground. (c) Single, monolithic system.

Figure 1. A schematic representation of the spectrum of modeling strategies. Solid arrows with speech bubbles denote (dynamic) messages
being passed between sub-systems (dotted arrows denote the lack thereof). Gist: on the one end of the spectrum, (Figure 1a), we have the
strategy of abstracting each intersection as a sub-system that interact with neighboring sub-systems. On the other end of the spectrum
(Figure 1c) we have the strategy of modeling the entire grid with one monolithic system. The middle ground (Figure 1b) we explore
involves letting the model develop a notion of locality by (say) abstracting entire avenues with a single sub-system.

models that can scale well, but its adequacy (in terms of
expressivity) is contingent on a predefined notion of locality
(in the example above: the immediate four-neighborhood of
an intersection). In this work, we aim to explore a middle-
ground between the two extremes: namely, by proposing
a class of models that does leverage the spatial structure,
but by developing a notion of locality instead of relying
on a predefined one (Figure 1b). Reconsidering the traffic
grid example: the proposed strategy results in a model that
can potentially learn to abstract (say) entire avenues with a
single sub-system. The interactions between intersections
are therefore replaced by those between avenues, resulting
in a scheme where a single sub-system might account for
events that are spatially distant (such as those in the opposite
ends of an avenue), but two events that are spatially closer
together (such as those on two adjacent avenues of the same
street, where streets run perpendicular to avenues) might be
accounted for by different sub-systems.

To implement this scheme, we will model the sub-systems
as independent recurrent neural networks (RNNs) that in-
teract sparsely via a bottleneck of attention (Goyal et al.,
2019), but extend this idea along two salient dimensions.
First, we relax the assumption that the interaction topol-
ogy between sub-systems (i.e., RNNs) is all-to-all, in the
sense that all sub-systems are allowed to interact with all
other sub-systems. We achieve this by learning to embed
each sub-system in an embedding space endowed with a
metric, and attenuate the interaction between two given sub-
systems by their distance in this space (i.e., sub-systems
too far away from each other in this space are not allowed
to interact). Second, instead of assuming that the entire
system is perceived simultaneously, we only assume access
to local (partial) observations alongside with the associated
spatial locations, resulting in a setting that partially resem-
bles that of Eslami et al. (2018). Expressed in the language
of the example above: we do not expect a birds eye view
of the traffic grid, but only (say) LIDAR observations from

autonomous vehicles at known GPS coordinates, or video
streams from traffic cameras at known locations. The spatial
location associated with an observation plays a crucial role
in the proposed architecture in that we map it to the embed-
ding space of sub-systems and address the corresponding
observation only to sub-systems whose embeddings lie in
close vicinity. Likewise, to predict future observations at
a queried spatial location, we again map said location to
the embedding space and poll the states of sub-systems sit-
uated nearby. The result is a model that can learn which
spatial locations are to be associated with each other and be
accounted for by the same sub-system. As an added plus,
the parameterization we obtain is not only agnostic to the
number of available observations and query locations, but
also to the number of sub-systems.

To evaluate the proposed model, we choose a problem set-
ting where (a) the task is composed of different sub-systems
or processes that locally interact both spatially and tempo-
rally, and (b) the environment offers local views into its
state paired with their corresponding spatial locations. The
challenge here lies in building and maintaining a consistent
representation of the global state of the system given only a
set of partial observations. To succeed, a model must learn
to efficiently capture the available observations and place
them in appropriate spatial context. The first problem we
consider is that of video prediction from crops, analogous
to that faced by visual systems of many animals: given
a set of small crops of the video frames centered around
stochastically sampled pixels (corresponding to where the
fovea is focused), the task is to predict the content of a crop
around any queried pixel position at a future time. The
second problem is that of multi-agent world modeling from
partial observations in spatial domains, such as the chal-
lenging Starcraft2 domain (Samvelyan et al., 2019; Vinyals
et al., 2017). The task here is to model the dynamics of
the global state of the environment given local observations
made by cooperating agents and their corresponding actions.
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Importantly and unlike prior work (Sun et al., 2019), our
parameterization is agnostic to the number of agents in the
environment, which can be flexibly adjusted on the fly as
new agents become available or existing agents retire. This
is beneficial for generalization in settings where the number
of agents during training and testing are different.

Contributions. (a) We propose a new class of models,
which we call Spatially Structured Recurrent Modules or
S2RMs, which perform attention-driven spatially local mod-
ular computations. (b) We evaluate S2RMs (along with sev-
eral strong baselines) on a selection of challenging problems
to find that S2RMs are robust to the number of available
observations and can generalize to novel tasks.

2. Problem Statement
In this section, we build on the intuition from the previous
section to formally specify the problem we aim to approach
with the methods described in the later sections.

Let X be a metric space, O some set of possible observa-
tions, and OX a set of mappings X → O. Now, consider
the evolution function of a discrete-time dynamical system:

φ : Z×OX → OX satisfying (1)
φ(0, o) = o where o ∈ OX and
φ(t2, φ(t1, o)) = φ(t1 + t2, o) for t1, t2 ∈ Z

Informally, o can be interpreted as the world state of the
system; together with a spatial location x ∈ X , it gives the
local observation O = o(x) ∈ O. Given an initial world
state o, the mapping φ(t, o) yields the world state at some
(future) time t, thereby characterizing the dynamics of the
system (which might be stochastic).

While the above class of dynamical systems is fairly general,
we now place a crucial restriction: namely, that for any pair
of space-time events (t1,x1) ∈ (Z × X ) and (t2,x2) and
given any initial state o0 ∈ OX , there exists a finite C > 0
such that the observation φ(t1, o0)(x1) can influence the
observation φ(t2, o0)(x2) only if t2 ≥ t1 and dX (x1,x2) ≤
C · (t2− t1), where dX is the metric on X . This assumption
induces a notion of spatio-temporal locality by imposing
that the effect of any given event can only propagate at a
finite speed, where the latter is upper bounded by C.

In this work, we are concerned with modelling systems that
are subject to the above restriction. Assuming the system
satisfies said restriction, we have the following

Problem: At every time step t = 0, ..., T , we are given a set
of positions {xa

t }Aa=1 and the corresponding observations
{Oa

t }Aa=1, where Oa
t := φ(t, o0)(xa) for some initial world

state o0. The task is to infer the world state φ(t′, o0) at some
future time-step t′ > T .

In the traffic grid example of Section 1, one could imagine

a as indexing traffic cameras or autonomous vehicles (i.e.,
observers), xa

t as the GPS coordinates of observer a, and Oa
t

as the corresponding sensor feed (e.g. LIDAR observations
or video streams from vehicles or traffic cameras).

3. Modelling Assumptions
Given the problem in Section 2, we now constrain it by
placing certain structural assumptions. These assumptions
will ultimately inform the inductive biases we select for
the model (proposed in Section 4); nevertheless, we remark
beforehand that as with any inductive bias, their applicability
is subject to the properties of the system being modeled and
the objectives1 being optimized.

Recurrent Dynamics Modeling. While there exist multi-
ple ways of modeling dynamical systems, we shall focus on
recurrent neural networks (RNNs). Typically, RNN-based
dynamics models are expressed as functions of the form:

ht+1 = F (Ot,ht) Ot = D(ht) (2)

where Ot is the observation at time t ∈ Z, and ht+1 is
the hidden state of the model. F can be thought of as
the parameterized forward-evolution function the hidden
state h conditioned on the observation O, whereas D is a
decoder that maps the hidden state to observations. Here,
the evolution function of the modelled dynamical system
(as defined in Equation 1) can be obtained by rolling out the
forward-evolution function in time.

Decomposition into Sub-systems. Without loss of gener-
ality, one may assume that the dynamical system φ defined
in Equation 1 can be decomposed into constituent systems
(φ1, φ2, ..., φM ), such that the interaction between all pairs
of sub-systems (φi, φj) satisfy some criterion. Now, the
strength of this assumed criterion lies on a spectrum. On
one end of the spectrum is the case where such a criterion is
non-existent, i.e., no such decomposition is assumed and full
generality is restored; this is the modeling assumption made
when using conventional recurrent models like GRUs (Cho
et al., 2014), LSTMs (Hochreiter & Schmidhuber, 1997)
and vanilla RNNs. On the other end of the spectrum lies a
setting where the decomposition is required to be such that
sub-systems do not interact, i.e., φi and φj have independent
dynamics (Li et al., 2018). Goyal et al. (2019) explore a
middle ground, where the interaction between sub-systems
(φi, φj) are possible but constrained. In particular, they
investigate a setting where the sub-systems are assumed
to interact sparsely, and the interaction pattern (i.e., which
sub-systems interact with which others) is dynamic and may
depend on the world state o. In this work, we adopt the
assumption of sparsely interacting sub-systems, but subject
the interaction pattern to an additional spatial constraint.

1E.g. generalization, sample complexity, robustness, etc.
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Figure 2. Schematic representation of the proposed architecture.

Local Interactions Between Sub-systems. In addition to
assuming dynamic sparse interactions between sub-systems,
we also assume that a given sub-system φj may preferen-
tially interact with another given sub-system φi. Intuitively,
one may think of φj as lying in vicinity of φi. This naturally
leads us to a notion of topology over sub-systems, one where
sub-systems situated in each other’s local neighborhood are
less constrained in their interactions. In the next section,
we will discuss how we model this topology by associating
each sub-system φi with a learned embedding pi in an ex-
isting metric space, which we will call S . Subsequently, the
affinity of sub-system φi to interact with another sub-system
φj will be quantified by a similarity measure Z, such that
Z(pi,pj) is large if φi and φj prefer to interact.

Locality of Observations. Recall from Section 2 that the
observations available to the model respect a notion of
spatio-temporal locality. However, this notion of locality
is distinct from the one between sub-systems (induced via
Z), and one important modeling decision is how the two
should interact. We propose to embed the position x ∈ X
associated with an observation O to the metric space of
sub-systems S via a continuous and one-to-one mapping
P : X → S , which allows us to match the observation O to
all sub-systems φm in the vicinity of P (x) ∈ S , i.e., where
Z(P (x),pm) is sufficiently large. Likewise, the same sub-
systems φm are polled if the model is queried for a predic-
tion at x. On a high level, this results in a scheme where
each subsystem φm can account for observations made at
a set of positions Xm ⊂ X , which we call its enclave. In
particular, the enclaves Xi and Xj corresponding to sub-
systems φi and φj may overlap, and we do not constrain the
distance between two given points in Xm to be small.

4. Proposed Model
Informed2 by the model assumptions detailed in the previous
section, we now proceed to describe the proposed model –
Spatially Structured Recurrent Modules or S2RM – which
comprise the following components (Figure 2):

Model Inputs. Recall from Section 2 that we have for ev-
ery time step t = 0, ..., T a set of tuples of positions and

2In doing so, we use the assumptions merely as guiding princi-
ples; we do not claim that we infer e.g. the true decomposition of
the ground-truth system, even if all assumptions are satisfied.

observations {(xa
t ,O

a
t )}Aa=1 where xa

t ∈ X and Oa
t ∈ O

for all t and a. To simplify, we assume that X ⊂ Rn, and
denote by xi the i-th component of the vector x ∈ X . En-
coder. The encoder E is a parameterized function mapping
observations O to a corresponding vector representation
e = E(O). Here, E processes all observations in parallel
across t and a to yield representations eat .

Positional Embedding. The positional embedding P is a
fixed mapping from X to S. We choose S to be the unit
sphere in d-dimensions, d being a multiple of 2n, and the
positional encoder as the following function:

P (x) = s/‖s‖ ∈ S where (3)
s2i+m = sin (xm/10000i) s2i+1+m = cos (xm/10000i) (4)

with m = 1, ..., n and i = 1, ..., d/2n. While the above
function is commonly used (Vaswani et al., 2017), other
choices might also be viable. Accommodating a slight abuse
of notation, we will refer to P (x) as s and P (xa

t ) as sat .

Set of Interacting RNNs. To model the dynamics of the
world state, we use a set of M independent RNN modules
(like in Goyal et al. (2019)), which we denote as {Fm}Mm=1.
To each Fm, we associate an embedding vector pm ∈ S,
where all {pm}Mm=1 are learnable parameters. On a high
level, RNNs Fm interact with each other via an inter-cell
attention, and with the input representations eat via input
attention. More precisely, at a given time step t, each Fm

expects an input um
t , together with an aggregated hidden

state h̄m
t and optionally a memory state cmt to yield the

hidden and memory states at the next time step:

(hm
t+1, c

m
t+1) = Fm(um

t , h̄
m
t , c

m
t ) (5)

where the input um
t results from the input attention and

h̄m
t from the inter-cell attention (both described below). If

available, the memory state cmt resembles the cell state in
an LSTM (Hochreiter & Schmidhuber, 1997).

Input Attention. Similar to MHDPA (multi-head dot-
product attention, Vaswani et al. (2017)), the input atten-
tion mechanism is a mapping between sets: namely, from
that of observation encodings {eat }Aa=1 to that of RNN in-
puts {um

t }Mm=1. In what follows, we use the einsum nota-
tion3 to succintly describe the exact mechanism. But be-
fore that, we define the truncated spherical Gaussian kernel
(Fasshauer, 2011) to quantify the similarity between two
points p, s ∈ S:

Z(p, s) =

{
exp [−2ε(1− p · s)], if p · s ≥ τ
0, otherwise

(6)

where ε ∈ R+ and τ ∈ [−1, 1) are hyper-parameters (kernel
bandwidth and truncation parameter, respectively), and

3Indices not appearing on both sides of an equation are summed
over; this is implemented as einsum in most DL frameworks.
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0 ≤ Z ≤ 1 since p and s are unit vectors. Now, we use
k to index the attention heads, d to index the dimension
of the key and query vectors, and denote with eai the i-th
component of eat and with hmj the j-th component of hm

t .
Given learnable parameters Θ(K), Θ(Q), Θ(V ), we obtain:

Qakd = eaiΘ
(Q)
ikd Kmkd = hmjΘ

(K)
jkd (7)

Vakv = eaiΘ
(V )
ikv W̃mak = QakdKmkd (8)

W̄mak = sma(W̃mak) W (L)
ma = Z(pm, sa) (9)

Wmak = W (L)
ma W̄mak ũm(kv) = WmakVakv (10)

where: sma denotes softmax along the a-dimension, W (L)

is what we will call the local weights, we omit the time sub-
script in sa for notational clarity, and ũm(kv) is the (kv)-th
component of a vector ũm. Finally, we obtain the compo-
nents umi of RNN inputs um

t via a gating operation:

umi = G(inp)
m · bmi + (1−G(inp)

m ) · ũmi (11)

where the gating weight G(inp)
m ∈ (0, 1) is obtained by pass-

ing ũmi and bmi = W
(L)
ma eai through a two-layer MLP with

sigmoidal output (in parallel across m). Now, observe that
by weighting the MHDPA attention outputs (W̄ in Equa-
tion 10) by the kernel Z (via W (L)), we construct a scheme
where the interaction between input Oa

t and RNN Fm is
allowed only if the embedding sat of the corresponding po-
sition xa

t has a large enough cosine similarity (≥ τ ) to
the embedding pm of Fm. This partially implements the
assumption of Locality of Observation detailed in Section 3.

Inter-cell Attention. The inter-cell attention maps the hid-
den states of each RNN {hm

t }Mm=1 to the set of aggregated
hidden states {h̄m

t }Mm=1, thereby enabling interaction be-
tween the RNNs Fm. While its mechanism is identical
to that of the input attention, we formulate it below for
completeness. To proceed, we denote with hli the i-th com-
ponent of hl

t (in addition to the notation introduced before
Equation 7), and take Φ(Q), Φ(K) and Φ(V ) to be learnable
parameters. We have:

Qmkd = hmjΦ
(Q)
jkd Klkd = hliΦ

(K)
ikd (12)

Vlkv = hliΦ
(V )
ikv W̃mlk = QmkdKlkd (13)

W̄mlk = sml(W̃mlk) W
(L)
ml = Z(pm,pl) (14)

Wmlk = W̄mlkW
(L)
ml h̃m(kv) = WmlkVlkv (15)

where h̃m(kv) is the (kv)-th component of a vector h̃m.
Finally, the j-th component h̄mj of the aggregated hidden
state h̄m

t in Equation 5 is given by a gating operation:

h̄mj = G(ic)
m · cmj + (1−G(ic)

m ) · h̃mj (16)

where the gating weight G(ic)
m ∈ (0, 1) is obtained by pass-

ing h̃mj and cmj = W
(L)
ml hlj through a two-layer MLP

with sigmoid output (in parallel across m). The weighting
by Z (in Equation 15, left) ensures that the interaction is
constrained to be only between RNNs whose embeddings in
S are similar enough, thereby implementing the assumption
of Local Interactions between Sub-systems in Section 3.

Output Attention. The output attention mechanism to-
gether with the decoder (described below) serve as an ap-
paratus to evaluate the world state modeled (implicitly) by
the set of RNNs ({Fm}Mm=1) at time t + 1 (for one-step
forward models). Given a query location xq ∈ X and its
corresponding embedding sq = P (xq) ∈ S, the output at-
tention mechanism polls the RNNs Fm whose embeddings
pm are similar enough to sq, as measured by the kernel Z.
Denoting hmj the j-th component of hm

t+1, we have:

dqj = Z(sq,pm)hmj (17)

where dqj can be interpreted as the j-th component of the
vector dq

t+1 associated with the query location xq .

Decoder. The decoder D is a parameterized function that
predicts the observation Ôq

t+1 ∈ O at xq given the repre-
sentation dq

t+1 from the output attention.

This concludes the description of the generic architecture,
which allows for flexibility in the choice of the RNN archi-
tecture (i.e., the internal architecture of Fm). In practice,
we find Gated Recurrent Units (GRUs) (Cho et al., 2014)
to work well, and call the resulting model Spatially Struc-
tured GRU or S2GRU. Moreover, Relational Memory Cores
(RMCs) (Santoro et al., 2018) also profit from our architec-
ture (with a minor modification detailed in Appendix B.3),
and we refer to the resulting model as S2RMC.

5. Related Work
Problem Setting. Recall that the problem setting we con-
sider is one where the environment offers local (partial)
views into its global state paired with the corresponding
spatial locations. With Generative Query Networks (GQNs),
Eslami et al. (2018) investigate a similar setting where the
2D images of 3D scenes are paired with the corresponding
viewpoint (camera position, yaw, pitch and roll). Given that
GQNs are feedforward models, they do not consider the
dynamics of the underyling scene and as such cannot be
expected to be consistent over time (Kumar et al., 2018).
Singh et al. (2019) and Kumar et al. (2018) propose variants
that are temporally consistent, but unlike us, they do not
focus on the problem of modeling the forward dynamics.

Modularity. Modularity has been a recurring topic in the
context of meta-learning (Alet et al., 2018; Bengio et al.,
2019; Ke et al., 2019), sequence modeling (Henaff et al.,
2016; Goyal et al., 2019; Li et al., 2018) and beyond (Jacobs
et al., 1991; Shazeer et al., 2017; Parascandolo et al., 2017).
However, unlike prior work, we integrate modularity and
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spatio-temporal structure in a unified framework.

Spatial Attention. Mechanisms for spatial attention have
been well studied (Jaderberg et al., 2015; Wang et al., 2017;
Zhang et al., 2018; Parmar et al., 2018), but they typically
operate on image pixels. Our setting is more general in the
sense that we do not necessarily require that the world state
of the underlying system be represented by images.

Attention Mechanisms and Information Flow. Attention
mechanisms have been used to attenuate the flow of infor-
mation between components of the network, e.g. in NTMs
(Graves et al., 2014), DNCs (Graves et al., 2016), RMCs
(Santoro et al., 2018), SAB (Ke et al., 2018) and Graph
Attention Networks (Veličković et al., 2017; Battaglia et al.,
2018). Our work contributes to this body of literature.

6. Experiments
In this section, we present a selection of experiments to
empirically evaluate S2RMs and gauge their performance
against strong baselines on two data domains. We proceed
as follows: in Section 6.1 we introduce the baselines, fol-
lowed by experimental results on a video prediction task
(Section 6.2) and on the multi-agent world modeling task in
the challenging Starcraft2 domain (Section 6.3). Additional
results and supporting plots can be found in Appendix C.

6.1. Baseline Methods

To draw fair comparisons, we require a baseline architec-
ture that is agnostic to the number of observations A, is
invariant to the ordering of {(xa

t ,O
a
t )}Aa with respect to a

and features a querying mechanism to extract a predicted
observation Oq

t′ at a given query location xq in a future
time-step t′ > t. Fortunately, it is possible to obtain a
performant class of models fulfilling our requirements by
extending prior work on Generative Query Networks or
GQNs (Eslami et al., 2018). The resulting model has three
components:

Encoder. At a given timestep t, the encoder E jointly maps
the embedding sat ∈ S of the position xa

t ∈ X and the
corresponding observations Oa

t to encodings eat , which are
then summed over a to obtain an aggregated representation:

rt =

A∑
a=1

E(Oa
t , s

a
t ) (18)

The additive aggregation scheme we use is well known
from prior work (Santoro et al., 2017; Eslami et al., 2018;
Garnelo et al., 2018) and makes the model agnostic to A
and to permutations of (xa

t ,O
a
t ) over a. The encoder E is

a seven-layer CNN with residual layers, and the positional
embedding sat is injected after the second convolutional
layer via concatenation with the feature tensor. The exact

architectures can be found in Appendices B.1 and B.2.

RNN. The aggregated representation rt is used as an input
to a RNN model F as following:

ht+1, ct+1 = F (rt,ht, ct) (19)

where ht and ct are hidden and memory states of the RNN
F respectively. We experiment with various RNN mod-
els, including LSTMs (Hochreiter & Schmidhuber, 1997),
RMCs (Santoro et al., 2018) and Recurrent Independent
Mechanisms (RIMs) (Goyal et al., 2019).

As a sanity check, we also show results with a Time Trav-
elling Oracle (TTO), which has access to rt+1 (but at time
step t), and produces ht+1 = FTTO(rt+1) with a two layer
MLP FTTO. TTO therefore does not model the dynamics,
but merely verifies that the additive aggregation scheme
(Equation 18) and the querying mechanism (Equation 20)
are sufficient for the task at hand.

Decoder. Given the embedding sq of the query position xq ,
the decoderD predicts the corresponding observation Ôq

t+1:

Ôq
t+1 = D(ht+1, s

q) (20)

We parameterize D with a deconvolutional network with
residual layers, and inject the positional embedding of the
query sq after a single convolutional layer by concatenating
with the layer features (see Appendices B.1 and B.2).

The architecture described above therefore extends the
framework of GQNs by predicting the forward dynamics
of the aggregated representation; nevertheless, we do not
consider it a novel contribution of this work.

6.2. Video Prediction from Crops

Task Description. We consider the problem of predicting
the future frames of simulated videos of balls bouncing in
a closed box (Miladinović et al., 2019), given only crops
from the past video frames which are centered at known
pixel positions. Using the notation introduced in Section 2:
at every time step t, we sample A = 10 pixel positions
{xa

t }10a=1 from the t-th full video frame ot of size 48× 48.
Around the sampled central pixel positions xa

t , we extract
11× 11 crops, which we use as the local observations Oa

t .
The task now is to predict 11× 11 crops Oq

t′ corresponding
to query central pixel positions xq

t′ at a future time-step
t′ > t. Observe that at any given time-step t, the model has
access to at most 52% of the global video frame assuming
that the crops never overlap (which is rather unlikely).

Dataset. We train all models on a training dataset of 20K
video sequences with 100 frames of 3 balls bouncing in an
arena of size 48× 48. We also include an additional fixed
ball in the center to make the task more challenging. We use
another 1K video sequences of the same length and the same
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Figure 3. Rollouts (OOD) with 5 bouncing balls, from top to bottom: ground-truth, S2GRU, RIMs, RMC, LSTM. Note that all models
were trained on sequences with 3 bouncing balls, and the global state was reconstructed by stitching together 11× 11 patches from the
models (queried on a 4× 4 grid). Gist: S2GRU succeeds at keeping track of all bouncing balls over long rollout horizons (25 frames).
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Figure 4. Performance metrics on OOD one-step forward predic-
tion task. Gist: S2GRU outperforms all RNN baselines OOD.

Figure 5. Visualization of the spatial locations each module is re-
sponsible for modeling (i.e. the enclavesXm, defined in Section 3).
The central ball does not bounce, i.e. it is stationary in all se-
quences. Gist: the modules focus attention on challenging regions,
e.g. the corners of the arena and the surface of the fixed ball.

number of balls as a held-out validation set. In addition, we
also have 5 out-of-distribution (OOD) test sets with various
number of bouncing balls (ranging from 1 to 6) and each
containing 1K sequences of length 100.

Training. We train all models until the validation loss is
saturated, and select the best of three runs (more details in
Appendix B.4.3). During training, we automatically decay
the learning rate by a factor of 2 if the validation loss does
not decrease by at least 0.01% for five consecutive epochs.

Evaluation Criteria. After having trained on the training
dataset with 3 bouncing balls, we evaluate the performance
on all test datasets with 1 to 6 bouncing balls. In Figure 4,
we report the balanced accuracy (i.e. arithmetic mean of
recall and specificity) and F1-scores (i.e. harmonic mean of
precision and recall) to account for class-imbalance. Addi-
tionally, in Figure 3, we qualitatively show reconstructions
from 25 step rollouts on the OOD dataset with 5 balls (see
Appendix C.1). Finally in Figure 5, we show for each mod-
ule its corresponding enclave, which is the spatial region
that it is responsible for modelling, i.e. for pixels at position
x, we plot {Z(P (x),pm)}10m=1 (cf. Section 4).

UT-F1 FM-F1 NMSE LL

(1s2z)
LSTM 0.6267 0.8464 -0.0040 -0.0382
RMC 0.6839 0.8597 -0.0033 -0.0334
S2GRU 0.7488 0.8627 -0.0023 -0.0233
S2RMC 0.7317 0.8563 -0.0026 -0.0261
TTO 0.7518 0.8883 -0.0025 -0.0259

(5s3z)
LSTM 0.4975 0.7123 -0.0134 -0.1251
RMC 0.5414 0.7486 -0.0132 -0.1167
S2GRU 0.5310 0.7058 -0.0119 -0.1108
S2RMC 0.5114 0.6945 -0.0124 -0.1205
TTO 0.6115 0.7872 -0.0107 -0.0940

Table 1. Performance metrics on OOD scenarios 1s2z and 5s3z
(larger numbers are better). The metrics are: unit-type macro F1
score (UT-F1), friendly-marker F1 score (FM-F1), HECS Negative
Mean Squared Error (NMSE) and Log Likelihood (LL).

Results. In Figure 4, we see that S2GRUs out-perform all
non-oracle baselines OOD on the one-step forward pre-
diction task and strike a good balance in regard to in-
distribution and OOD performance. Note, however, that
the additive aggregation scheme and querying mechanism
(Equations 18 and 20) can indeed generalize, as shown by
the good performance of the oracle (TTO). Figure 5 shows
how the modules share responsibility of modelling the entire
spatial domain, whereas Figure 3 shows that S2GRUs can
perform OOD rollouts over long horizons (25 frames) with-
out losing track of balls. Additional results in Appendix C.1.

6.3. Multi-Agent World Modeling on Starcraft2

Task Description. In Section 2, we formulated the problem
of modeling what we called the world state o of a dynamical
system φ given local observations {(xa

t ,O
a
t )}Aa=1 where

Oa
t = φ(t, o)(xa

t ). Under certain restrictions, this problem
can be mapped to that of multi-agent world modeling from
partial and local observations, allowing us to evaluate the
proposed model in a rich and challenging setting. In par-
ticular, we consider environments that are (a) spatial, i.e.
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Figure 6. Performance metrics (larger the better) as a function of the probability that an agent will not supply information to the world
model but still query it. Gist: while all models lose performance as fewer agents share observations, we find S2RMs to be most robust.

all agents a in it have a well-defined and known location
xa
t (at time t), (b) the agents’ actions ua

t are local, in that
their effects propagate away (from the agent) only at a finite
speed, (c) the observations are local and centered around
agents, in the sense that the agent only observes the events
in its local vicinity, i.e., Oa

t . Observe that we do not fix the
number of agents in the environment, and allow for agents to
dynamically enter or exit the environment. Now, the task is:
given observations Oa

t from a team of (cooperating) agents
at position xa

t and their corresponding actions ua
t , predict

the observation Oq
t′ that would be made by an agent at time

t′ = t+ 1 if it were at position xq. In particular, note that
unlike in Bouncing Balls, the positions xa

t and xa
t+1 are no

longer independent and depend on the agents’ behaviour.

The SC2 Domain. Starcraft2 unit-micromanagement
(Samvelyan et al., 2019) is a multi-agent reinforcement
learning benchmark, wherein teams of heterogeneously
typed units must defeat a team of opponents in melee and
ranged combat. Each unit type has its own characteristics,
e.g. maximum health, shields, weapon abilities (cool-down,
damage per second, splash damage, etc), and strengths (vul-
nerabilities) against (towards) other unit types, making the
world-modeling task all the more rich and challenging.

Dataset. The observations Oa
t and actions ua

t are both
multi-channel images represented in polar coordinates cen-
tered around the agent position xt

a. The field of view (FOV)
of each agent is therefore a circle of fixed radius centered
around it. The channels of the image correspond to (a) a
binary indicator marking whether a position in FOV is occu-
pied by a living friendly agent (friendly marker), (b) a cate-
gorical indicator marking the type of living units at a given
position in FOV (unit-type marker), and (c) four channels
marking the health, energy, weapon-cooldown and shields
(HECS markers) of all agents in FOV. With a heuristic,
we gather a total of 9K trajectories ({xa

t ,O
a
t ,u

a
t }Aa=1)100t=1

spread over three training scenarios, corresponding to
1c3s5z4, 3s5z and 2s5z in Samvelyan et al. (2019).
In addition, we also sample 1K trajectories (each) from two
OOD scenarios 1s2z and 5s3z. Details in Appendix A.

4Here, the code 1c3s5z refers to a scenario where each team
comprises 1 colossus (1c), 3 stalkers (3s), and 5 zealots (5z).

Training. While adopting the training protocol detailed
in Appendix B.4.3, we adapt the encoder and decoder ar-
chitecture to match the state representation by including
circular convolutions (cf. Appendix B.2). Now, recall that
predicting the next state entails predicting images of binary
friendly markers, categorical unit type markers and real
valued HECS markers. Accordingly, the loss function is a
sum of a binary cross-entropy term (on friendly markers), a
categorical cross-entropy term (on unit-type markers) and a
mean squared error term (on HECS markers).

Evaluation Criteria. After having trained all models on
scenarios 1c3s5z, 3s5z and 2s5z, we test their robust-
ness to dropped agents (Figure 6) and their performance on
OOD scenarios (Table 1). We only show baselines that
achieve similar or better validation scores than S2RMs,
and report the F1 scores for binary friendly markers, multi-
class (macro) F1 score for unit-type markers, negative mean
squared error for HECS markers (tables in Appendix C.2).

Results. Figure 6 shows that S2RMs remain robust when
fewer agents supply their observations to the world model,
whereas Table 1 shows that S2GRU outperforms the base-
lines in the OOD scenario 1s2z but is matched by RMCs
in 5s3z (see Appendix C.2 for details).

Conclusions and Outlook
We proposed Spatially Structured Recurrent Modules, a new
class of models constructed to jointly leverage both spatial
and modular structure in data, and explored its potential
in the challenging problem setting of predicting the for-
ward dynamics from partial observations at known spatial
locations. In the tasks of video prediction from crops and
multi-agent world modeling in the Starcraft2 domain, we
found that it compares favorably against strong baselines in
terms of out-of-distribution generalization and robustness
to the number of available observations. Future work may
focus on exploring efficient implementations using block-
sparse methods (Gray et al., 2017), which could potentially
unlock applications to significantly larger scale spatial prob-
lems encountered in domains such as humanitarian aid and
climate change research (Rolnick et al., 2019).
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A. Starcraft2
The Starcraft2 Environment we use is a modified version
of the SMAC-Env proposed in Samvelyan et al. (2019) and
built on PySC2 wrapper around Blizzard SC2 API (Vinyals
et al., 2017). Starcraft2 is a real-time-strategy (RTS) game
where players are tasked with manufacturing and controlling
armies of units (airborne or land-based) to defeat the oppo-
nent’s army (where the opponent can be an AI or another
human). The players must choose their alien race5 before
starting the game; available options are Protoss, Terran
and Zerg. All unit types (of all races) have their strengths
and weaknesses against other unit types, be it in terms of
maximum health, shields (Protoss), energy (Terran), DPS
(damage per second, related to weapon cooldown), splash
damage, or manufacturing costs (measured in minerals and
vespene gas, which must be mined).

The key engineering contribution of Samvelyan et al. (2019)
is to repurpose the RTS game as a multi-agent environment,
where the individual units in the army become individual
agents6. The result is a rich and challenging environment
where heterogeneous teams of agents must defeat each other
in melee and ranged combat. The composition of teams
vary between scenarios, of which Samvelyan et al. (2019)
provide a selection. Further, new scenarios can be easily
created with the SC2MapEditor, which allows for practically
endlessly many possibilities.

We build on Samvelyan et al. (2019) by modifying their envi-
ronment to better expose the transfer and out-of-distribution
aspects of the domain by (a) standardizing the state and
action space across a large class of scenarios and (b) stan-
dardizing the unit stats to better reflect the game-defined
notion of hit-points.

A.1. Standardized State Space for All Scenarios

In the environment provided by Samvelyan et al. (2019),
the dimensionality of the vector state space varies with the
number of friendly and enemy agents, which in turn varies
with the scenario. While this is not an issue in the typical
use case of training MARL agents in a fixed scenario, it is
not convenient for designing models that seamlessly handle
multiple scenarios. In the following, we propose an alternate
state representation that preserves the spatial structure and
is consistent across multiple scenarios.

Instead of representing the state of an agent a with a vector
of variable dimension, we represent it with a multi-channel
polar image Ia of shape C × I × J , where C is the number
of channels and (I, J) is the image size. Given the radial

5Please note that this is a game-specific notion.
6Note that this is rather unconventional, since each player usu-

ally controls entire armies and must switch between macro- and
micro-management of units or unit-groups.

and angular resolutions ρ and ϕ (respectively), the pixel
coordinate i = 0, ..., I − 1, j = 0, ..., J − 1 corresponds to
coordinates (i · ρ, j · ϕ) with respect to a polar coordinate
system centered on the agent a, where the positive x-axis
(j = 0) points towards the east. Further, the field of view
(FOV) of an agent is characterized by a circle of radius
I · ρ centered on the agent at 2D game-coordinates xa =
(xa1 , x

a
2), to which the Starcraft2 API (Vinyals et al., 2017)

provides raw access.

The polar image Ia therefore provides an agent-centric view
of the environment, where pixel coordinates i, j in Ia can
be mapped to global game coordinates x = (x1, x2) in FOV
via:

x1 = i · ρ cos [j · ϕ] + xa1 (21)
x2 = i · ρ sin [j · ϕ] + xa2 (22)

In what follows, we denote this transformation with Ta, as
in Ta(i, j) = (x1, x2).

Now, the channels in the polar image can encode various
aspects of the observation; in our case: friendly markers
(one channel), unit-type markers (nine channels, one-hot),
health-energy-cooldown-shields (HECS, four channels) and
terrain height (one channel). As an example, let us consider
the friendly markers, which is a binary indicator marking
units that are friendly. If we have an agent at game position
(x1, x2) that is friendly to agent a, then we would expect the
pixel coordinate (i, j) = T−1a (x1, x2) of the corresponding
channel in the polar image Ia to be 1, but 0 otherwise. Like-
wise, the value of I at the channels corresponding to HECS
at pixel position i, j gives the HECS of the corresponding
unit7 at Ta(i, j). This representation has the following ad-
vantages: (a) it does not depend on the number of units in
the field of view, (b) it exposes the spatial structure in the
arrangement of units which can naturally processed by con-
volutional neural networks (e.g. with circular convolutions).

Nevertheless, it has the disadvantage that the positions are
quantized to pixels, but the euclidean distance between the
locations represented by pixels (i, j) and (i, j+1) increases
with increasing i. Consequently, this representation may not
remain suitable for larger FOVs.

Further, this representation is also appropriate for the action
space. Given an agent, we represent the one-hot categorical
actions of all friendly agents in FOV as a multi-channel polar
image. In this representation, the pixel position i, j gives the
action taken by an agent at at position Ta(i, j). Unfriendly
agents get assigned an ”unknown action”, whereas positions
not occupied by a living agent are assigned a ”no-op” action.

7If health drops to zero, the unit is considered dead and the
representation does not differentiate between dead and absent units.
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(a) 1s2z (1 Stalker and 2 Zealots per team). (b) 5s3z (5 Stalkers and 3 Zealots per team).

(c) 2s3z (2 Stalkers and 3 Zealots per team). (d) 3s5z (3 Stalkers and 5 Zealots per team).

(e) 1c3s5z (1 Colossus, 3 Stalkers and 5 Zealots per team).

Figure 7. Human readable illustrations of the Starcraft2 (SMAC) scenarios we consider in this work. Figures 7a and 7b show the OOD
scenarios, whereas Figures 7c, 7d and 7e show the training scenarios (provided by Samvelyan et al. (2019)).

A.2. Standardized Unit Stats

At any given point in time, an active unit in Starcraft2 has
certain stats, e.g. its health, energy (Terran), shields (Pro-
toss) and weapon-cooldown (for armed units). A large and
expensive unit-type like the Colossus has more max-health
(hit-points) than smaller units like Stalkers and Marines8.
Likewise, unit-types differ in the rate at which they deal
damage (measured in damage-per-second or DPS, exclud-
ing splash damage), which in turn depends on the cooldown
duration of the active weapon.

Now, the environment provided by Samvelyan et al. (2019)
normalizes the stats by their respective maximum value,
resulting in values between 0 and 1. However, given that
different units may have different normalization, the stats
are rendered incomparable between unit types (without addi-
tionally accounting the unit-type). We address this by stan-

8These stats may change with game-versions, and are cata-
logued here: https://liquipedia.net/starcraft2/
Units_(StarCraft).

dardizing stats (instead of normalizing) by dividing them
by a fixed value. In this scheme, the stats are scaled uni-
formly across all unit-types, enabling models to directly
rely on them instead of having to account for the respective
unit-types.

B. Hyperparameters and Architectures
B.1. Encoder and Decoder for Bouncing Balls

The architectures of image encoder and decoder was fixed
for all models after initial experimentation. We converged
to the following architectures.

B.1.1. S2RMS

The encoder (decoder) is a (de)convolutional network with
residual connections (Figure 9).

https://liquipedia.net/starcraft2/Units_(StarCraft)
https://liquipedia.net/starcraft2/Units_(StarCraft)
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Figure 8. Baseline encoder and decoder architectures for the
Bouncing Ball task.
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B.1.2. BASELINES

Like in the case of S2RMs, the encoder (decoder) is a
(de)convolutional network with residual connections (Fig-
ure 8), but with the positional embeddings injected after the
second convolutional layer. This is loosely inspired by the
encoders used in Eslami et al. (2018).

B.2. Encoder and Decoder for Starcraft2

B.2.1. S2RMS

Recall from Appendix A that the states are polar images.
We therefore use polar convolutions, which entails zero-
padding the input image along the first (radial) dimension
but circular padding along the second (angular) dimension.
The encoder and decoder architectures can be found in Fig-
ure 11.

B.2.2. BASELINES

Like for S2RMs, we use polar convolutions while injecting
the positional embeddings further downstream in the net-
work. The corresponding encoder and decoder architectures
are illustrated in Figure 10.

B.3. Spatially Structured Relational Memory Cores
(S2RMCs)

Embedding Relational Memory Cores (Santoro et al., 2018)
naı̈vely in the S2RM architecture did not result in a working
model. We therefore had to adapt it by first projecting the
memory matrix (M in Santoro et al. (2018)) of the m-th
RMC to a message hm

t . This message is then processed by
the intercell attention to obtain h̄m

t , which is finally con-
catenated with the memory matrix and current input before
applying the attention mechanism (i.e. in Equation 2 of
Santoro et al. (2018), we replace [M ;x] with

[
M ;x, h̄m

t

]
).

B.4. Hyperparameters

B.4.1. BOUNCING BALL MODELS

The hyperparameters we used can be found in Table 2. Fur-
ther, note that in Equation 6, we pass the gradients through
the constant region of the kernel as if the kernel had not
been truncated.

B.4.2. STARCRAFT2 MODELS

The hyperparameters we used can be found in Table 3. Note
that we only report models that attained a validation loss
similar to or better than S2RMs.
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Figure 10. Baseline encoder and decoder architectures for the Star-
craft2 task.
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Figure 11. S2RM encoder and decoder architectures for the Star-
craft2 task.

Model
Hyperparameter Value

S2GRU
Number of modules (M ) 10
GRU: hidden size per module 128
Module embedding size (d) 16
Kernel bandwidth (ε) 1
Kernel truncation (τ ) 0.6
shape Θ(Q/K) (128, 2, 016)
shape Θ(V ) (128, 2, 128)
shape Φ(Q/K) (128, 4, 016)
shape Φ(V ) (128, 4, 128)

RMC (Santoro et al., 2018)
Number of attention heads 4
Size of attention head 128
Number of memory slots 1
Key size 128

LSTM (Hochreiter & Schmidhuber, 1997)
Hidden size 512

RIMs (Goyal et al., 2019)
Number of RIMs (kT ) 6
Update Top-k (kA) 5
Hidden size (hsize) 510
Input key size 32
Input value size 400

TTO
MLP hidden size 512

Table 2. Hyperparameters used for various models on the Bounc-
ing Ball task. Hyperparameters not listed here were left at their
respective default values.
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Model
Hyperparameter Value

S2GRUs
Number of modules (M ) 10
GRU: hidden size per module 128
Module embedding size (d) 8
Kernel bandwidth (ε) 1
Kernel truncation (τ ) 0.5
shape Θ(Q/K) (128, 2, 016)
shape Θ(V ) (128, 2, 128)
shape Φ(Q/K) (128, 4, 016)
shape Φ(V ) (128, 4, 128)

S2RMC
Number of modules (M ) 10
RMC: number of attention heads 4
RMC: size of attention head 64
RMC: number of memory slots 4
RMC: key size 64
Module embedding size (d) 8
Kernel bandwidth (ε) 1
Kernel truncation (τ ) 0.5
shape Θ(Q/K) (128, 2, 016)
shape Θ(V ) (128, 2, 128)
shape Φ(Q/K) (128, 4, 016)
shape Φ(V ) (128, 4, 128)

RMC (Santoro et al., 2018)
Number of attention heads 4
Size of attention head 128
Number of memory slots 1
Key size 16

LSTM (Hochreiter & Schmidhuber, 1997)
Hidden size 2048

TTO
MLP hidden size 512

Table 3. Hyperparameters used for various models on the Star-
craft2 task. Hyperparameters not listed here were left at their
respective default values.

B.4.3. TRAINING

All models were trained using Adam (Kingma & Ba, 2014)
with an initial learning rate 0.00039. We use Pytorch’s
(Paszke et al., 2019) ReduceLROnPlateau learning rate
scheduler to decay the learning rate by a factor of 2 if the
validation loss does not improve by at least 0.01% over
the span of 5 epochs. We initially train all models for 100
epochs, select the best of three successful runs, fine-tune
it for another 100 epochs, and finally select the checkpoint
with the lowest validation loss (i.e. we early stop). We train
all models with batch-size 8 (Starcraft2) or 32 (Bouncing
Balls) on a single V100-32GB GPU (each).

C. Additional Results
C.1. Bouncing Balls

C.1.1. ROLLOUTS

To obtain the rollouts in Figure 3, we adopt the following
strategy. For the first 20 prompt-steps, we present all mod-
els with exactly the same 11× 11 crops around randomly
sampled pixel positions for 20 time-steps. For the next 25
steps, all models are queried at random pixel positions10,
and the resulting predictions (on crops) are thresholded at
0.5 and fed back in to the model for the next step (at known
pixel positions from the previous step).

Also at every time-step, the models are queried for their
predictions on 16 pixel locations placed on a 4 × 4 grid.
The resulting predictions are stitched together and shown in
Figures 12, 13, 14, 15, 3 and 16.

C.1.2. ROBUSTNESS TO DROPPED VIEWS

In this section, we evaluate the robustness of all models to
dropped crops on in-distribution and OOD data. We measure
the performance metrics on one-step forward prediction task
on all datasets (with 1-6 balls), albeit by dropping a given
fraction of the available input observations.

Figure 17 and 18 visualize the performance of all evaluated
models. We find that S2GRU maintains performance on
OOD data even with fewer views (or crops) than it was
trained on. Interestingly, we find that the time-travelling or-
acle (TTO), while robust OOD, is adversely affected by the
number of available views. This could be because unlike the
other models, it cannot leverage the temporal information
to compensate for the missing observations.

9https://twitter.com/karpathy/status/
801621764144971776?s=20

10These random pixel positions are the same for all models, but
change between time-steps

https://twitter.com/karpathy/status/801621764144971776?s=20
https://twitter.com/karpathy/status/801621764144971776?s=20
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Figure 12. Rollouts (OOD) with 1 bouncing ball, from top to bottom: ground-truth, S2GRU, RIMs, RMC, LSTM. Note that all models
were trained on sequences with 3 bouncing balls, and the global state was reconstructed by stitching together 11× 11 patches from the
models (queried on a 4× 4 grid).

Figure 13. Rollouts (OOD) with 2 bouncing balls, from top to bottom: ground-truth, S2GRU, RIMs, RMC, LSTM. Note that all models
were trained on sequences with 3 bouncing balls, and the global state was reconstructed by stitching together 11× 11 patches from the
models (queried on a 4× 4 grid).

Figure 14. Rollouts (ID) with 3 bouncing balls, from top to bottom: ground-truth, S2GRU, RIMs, RMC, LSTM. Note that all models
were trained on sequences with 3 bouncing balls, and the global state was reconstructed by stitching together 11× 11 patches from the
models (queried on a 4× 4 grid).

Figure 15. Rollouts (OOD) with 4 bouncing balls, from top to bottom: ground-truth, S2GRU, RIMs, RMC, LSTM. Note that all models
were trained on sequences with 3 bouncing balls, and the global state was reconstructed by stitching together 11× 11 patches from the
models (queried on a 4× 4 grid).
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Figure 16. Rollouts (OOD) with 6 bouncing balls, from top to bottom: ground-truth, S2GRU, RIMs, RMC, LSTM. Note that all models
were trained on sequences with 3 bouncing balls, and the global state was reconstructed by stitching together 11× 11 patches from the
models (queried on a 4× 4 grid).

C.2. Starcraft2

C.2.1. TABULAR RESULTS

The results used to plot Figure 6 can be found tabulated in
Tables 4, 5, 6 and 7.
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(e) TTO

Figure 17. Balanced accuracy (arithmetic mean of recall and specificity) achieved by all evaluated models for one-step forward prediction
task with various number of balls and fractions of available views. All models were trained on video sequences with 3 balls and a constant
number of crops / views (10 views, corresponding to the right-most columns labelled 1.0). The color map is consistent across all plots.
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(a) S2GRU
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(e) TTO

Figure 18. F1-Score (harmonic mean of precision and recall) achieved by all evaluated models for one-step forward prediction task with
various number of balls and fractions of available views. All models were trained on video sequences with 3 balls and a constant number
of crops / views (10 views, corresponding to the right-most columns labelled 1.0). The color map is consistent across all plots.
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Model LSTM RMC S2GRU S2RMC TTO
% of Active Agents

20% 0.570565 0.586541 0.642292 0.637618 0.550806
30% 0.599391 0.606114 0.660127 0.653950 0.578965
40% 0.630606 0.640435 0.678752 0.671476 0.605867
50% 0.638374 0.657472 0.688528 0.685988 0.627444
60% 0.681040 0.704552 0.713851 0.708786 0.671961
70% 0.709861 0.737436 0.734256 0.727980 0.723238
80% 0.721041 0.748138 0.738611 0.732114 0.740936
90% 0.750449 0.778647 0.755476 0.747613 0.786931

100% 0.765592 0.795049 0.763126 0.754637 0.813504

Table 4. Friendly marker F1 scores on the validation set of the training distribution. Larger numbers are better.

Model LSTM RMC S2GRU S2RMC TTO
% of Active Agents

20% 0.323482 0.326685 0.435318 0.377538 0.297192
30% 0.345108 0.350621 0.491934 0.433945 0.323736
40% 0.373612 0.387733 0.540163 0.485278 0.350733
50% 0.385550 0.406048 0.552589 0.510371 0.371088
60% 0.430793 0.481986 0.599470 0.566149 0.435724
70% 0.497964 0.590214 0.635928 0.606039 0.539652
80% 0.579952 0.649277 0.650682 0.623040 0.617973
90% 0.657643 0.694158 0.675294 0.655581 0.699008

100% 0.677952 0.715929 0.689669 0.672186 0.737745

Table 5. Unit-type marker (macro averaged) F1 scores on the validation set of the training distribution. Larger numbers are better.

Model LSTM RMC S2GRU S2RMC TTO
% of Active Agents

20% -0.014035 -0.013569 -0.011491 -0.011921 -0.014174
30% -0.013355 -0.012747 -0.010631 -0.011101 -0.013539
40% -0.012567 -0.011808 -0.009906 -0.010367 -0.012916
50% -0.012220 -0.011305 -0.009637 -0.009887 -0.012481
60% -0.010888 -0.009799 -0.008751 -0.009034 -0.010929
70% -0.009738 -0.008469 -0.008068 -0.008359 -0.009184
80% -0.009081 -0.008027 -0.007873 -0.008162 -0.008466
90% -0.007970 -0.007180 -0.007347 -0.007615 -0.007038

100% -0.007638 -0.006823 -0.007103 -0.007362 -0.006401

Table 6. HECS Negative MSE on the validation set of the training distribution. Larger numbers are better.



S2RM: Spatially Structured Recurrent Modules

Model LSTM RMC S2GRU S2RMC TTO
% of Active Agents

20% -0.303051 -0.300892 -0.141989 -0.146553 -0.434099
30% -0.258878 -0.256878 -0.126037 -0.137025 -0.347899
40% -0.216924 -0.211048 -0.113317 -0.126882 -0.276596
50% -0.206582 -0.191644 -0.108643 -0.113293 -0.245019
60% -0.158170 -0.142643 -0.094380 -0.099989 -0.175233
70% -0.126446 -0.109634 -0.084129 -0.089527 -0.120694
80% -0.111735 -0.099229 -0.081624 -0.086723 -0.104135
90% -0.082463 -0.074518 -0.073439 -0.078197 -0.071243

100% -0.070488 -0.063183 -0.069856 -0.074041 -0.057276

Table 7. Log Likelihood (negative loss) on the validation set of the training distribution. Larger numbers are better.


