Learning Action Priors for Visuomotor transfer

Anurag Ajay' Pulkit Agrawal !

Abstract

Reinforcement learning (RL) systems have
proven to be successful in the domain of games,
but have met with limited success on real-world
tasks. A significant reason is that RL systems
are extremely sample-inefficient. They are usu-
ally designed to solve one particular task from
scratch instead of reusing the knowledge gained
by solving previous tasks. Prior works have tried
to resolve this issue by learning a prior over past
state distribution in form of a pre-trained policy.
However, these approaches fail when new tasks
have different state distribution and different re-
ward function. In this work, we propose to learn
an additional prior over useful action trajectories,
called extended action prior (EAP). We show that
EAP leads to significant performance boosts in
the context of transfer learning across tasks and
in multi-task reinforcement learning. Importantly,
the proposed method is simple and agnostic to
the specific choice of learning architectures and
RL algorithms. We evaluate our method on meta-
world and procgen benchmarks.

1. Introduction

Reinforcement Learning (RL) systems have achieved im-
pressive performance in games such as GO, ATARI, and
many others (Mnih et al., 2015; Silver et al., 2017). Yet,
their applicability to real-world tasks remains limited due
to the appalling data requirements. A significant reason for
this gap in data efficiency is that current RL agents are de-
signed to solve one particular task from scratch. In contrast,
humans make use of their experience to quickly learn new
tasks. The typical method for transferring information in
deep RL is to finetune the policy network pre-trained on a
previous set tasks on a new task at hand. This process essen-
tially transfers information about what actions to perform

"Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, USA. Corre-
spondence to: Anurag Ajay <aajay @mit.edu>.

International Conference on Machine Learning workshop on In-
ductive Biases, Invariances and Generalization in RL (BIG), Copy-
right 2020 by the author(s).

if the observations in the new task are similar to those in
the previous tasks. However, in many real-world scenarios
a new task might have a different reward structure or there
might be significant differences in say the visual observa-
tions. In such scenarios, simply fine-tuning the policy is
unlikely to work well.

Our insight is that only transferring observation specific in-
formation about how to act is limited. To see why, consider
for instance video games, by jumping up and down at one
spot, the agent will not succeed. However, jumping from one
platform to another or over an obstacle increases the chance
of success. This example suggests that not all sequences of
actions are important, but there is possibly a relatively small
set of action sequences (or skills) that are critical for success.
In other words, in addition to observation-specific informa-
tion that can be transferred, there is also structure in the
action space that is shared between tasks. Current methods
for transfer in RL do not exploit this structure in the action
space. As an illustration, consider using a pre-trained policy
to solve a new task with a different reward structure, which
otherwise has similar sensory statistics as the previous tasks.
To compensate for the changes in the reward structure, the
agent might need to unlearn its current strategy and learn a
new sequence of actions. This search will be more efficient
if the search space is constrained only to the set of useful
skills. Similarly, if the statistics of the observation space
change drastically, the agent will have to learn from random
exploration. Again, exploring in the space of useful skills
will be beneficial. We therefore propose a simple, yet highly
effective method for transferring sensorimotor knowledge
across tasks instead of just transferring the shared structured
in the sensory space.

The natural next question is how to exploit the structure in
the action space? In a spirit similar to prior work on skill
learning (Bacon et al., 2016; Lynch et al., 2019), we propose
to condense successful trajectories on previous tasks into a
set of continuously parameterized skills. Specifically, we
learn a latent space (z;) for sampling action sequence, i.e.
ag+7 ~ 2. The latent space, z;, which we call as the
Extended Action Prior (EAP), is optimized to sample action
sequences from successful trajectories on previous tasks
with high-probability. Suppose that the pretrained policy is
represented by 7(aq|s;; 6), where s, is the current state and
6 denotes the policy parameters. Using EAP, this policy can

Learning Action Priors for Visuomotor transfer

be transformed into 7(z;|s¢; 0). Finetuning on a new task
with EAP, therefore, ensures that we transfer sensorimotor
and not just sensory information. We show that finetuning
with EAP leads to substantial improvements in performance
when transferring to a task with a different reward struc-
ture and visual appearance, on video game environments
released as part of the procgen benchmark (Cobbe et al.,
2019). Note that in contrast to prior work that has used
skills/options to improve learning efficacy on a single task,
here we are advocating for using skills to transfer action
priors across tasks. A detailed discussion comparing ours
and prior work is provided in Appendix A.

Until now we have assumed that the agent had access to
successful trajectories from previously solved tasks. While
it is possible to train on different tasks individually, it turns
out that learning simultaneously on multiple tasks remains
an open problem in RL (Cobbe et al., 2019; Schaul et al.,
2019; Yu et al., 2020). This is undesirable because train-
ing separate policies for different tasks means that it is not
possible to share common information between tasks. The
difficulty of learning from multiple tasks in RL arises due
to exacerbation of variance in gradients. The typical source
of variance is that a certain set of actions might be present
in both trajectories that achieve high and low rewards. In
turn, this leads to conflicting gradients which leads to in-
stabilities in training. In case of multiple tasks, a certain
action sequence may lead to high-reward for one task, but
lower reward for another task. Such scenarios further in-
crease the variance in gradients leading to learning failures
in multi-task RL setups.

A recent work proposed to mitigate this noisy gradient prob-
lems by explicitly removing conflicting information between
gradients computed from different tasks (i.e., projecting
conflicting gradients or pc-grad; (Yu et al., 2020)). Com-
plementary to this approach, we make an observation that
problem of noisy gradients can also be mitigated by improv-
ing exploration. This is because, as explained above, the
noise/variance problem is caused by the same set of actions
appearing in different trajectories that result in high and
low rewards respectively. If the agent is performing random
exploration, just by chance, it is more likely for an action
sequence to be part of both high and low reward trajectories.
In contrast, if the exploration is structured, chances of such
occurrence will reduce. We empirically demonstrate that
this intuition is indeed true and better exploration leads to
large gains in performance in multi-task RL. Specifically,
we show that multi-task learning with EAP on on MT10 and
MT50 benchmarks of the metaworld (Yu et al., 2019) en-
vironment substantially outperforms learning without EAP.

2. Method

Our aim is to learn action and state priors from past expe-
riences for improved transfer and performance. Let’s say

Reconstruction (..., av+k) [Cor
Loss i
Alyeeny ag Ry (acoaer Y=

Inference time

Train time

Graphical Model of the agent

Figure 1. Extended Action Prior (EAP). Left shows the underly-
ing graphical model of the agent where states and action sub-
trajectories are observed. Center shows execution of EAP during
train time while right shows execution of EAP during inference
time.

we already have a dataset of high-reward trajectories col-
lected by solving some prior tasks. We use the dataset to
learn priors which gives high likelihood to the trajectories
in the dataset. Let D = {(si,a!)_}& | where T is the
task horizon and N is the number of trajectories. We want
to learn an action prior m,.; which takes in an extended
action z; and generates the action sub-trajectories (a;)%"
where k is a hyperparameter. In addition, we want to learn
a state prior 74s,¢e Which takes in the current state s; and
generates an extended action z; that has high likelihood of
generating a sub-trajectory from the dataset when used with
the action prior. Overall, we want to learn m,.; and Tssqte
such that ESu(at')in’t (B (s0) [Tact ((ar)55 20)]] s
maximized. We use Tszqre and 7ot together to explore new
tasks. When we encounter a new task with different state dis-
tribution or reward function, 744t might not give the right
extended actions but 7, Will still generate a sub-trajectory
that has high-likelihood of coming from the dataset (i.e. has
been useful in the past).

2.1. Extended Action Prior (EAP)

In this subsection, we will describe the details of our pro-
posed model Extended Action Prior (EAP). EAP is based
on framework of conditional VAE (Sohn et al., 2015). We
assume that the agent observes observes the current state s,
generates a latent extended action z; based on the current
state and then unrolls the extended action z; in form of a
sub-trajectory (a¢, a¢41,. - ., Gi4x—1). This assumed graph-
ical model is visualized in Figure 1. Under this graphical
model, the encoder uses the current state and the action
sub-trajectory to infer the latent extended action and the
decoder (i.e. m4¢) uses the extended action to reconstruct
the sub-trajectory. In addition, we learn a prior (i.e. Ts¢qte)
which generates the extended action only using the current
state. We will now describe these components in detail.

Prior is our state prior 74+ and acts like a manager policy
which takes in the current state and gives the distribution of
extended action from which we sample the extended action
during the inference time. (", 0%") = Tgate(se); 26 ~

N (uf",0"). Decoder is our action prior 7, and acts

Learning Action Priors for Visuomotor transfer

like a low-level policy which takes in the extended action
and unrolls a corresponding sequence of k action distri-
bution from which we sample the action sub-trajectory.
(Teyo oy Tegk—1) = Taet(2e); (@, ooy Qipp—1) ~
(m¢, ..., mrk—1). Encoder takes in the current state
and the action sub-trajectory and infers the distribution
of extended action which could have generated the ac-
tion sub-trajectory. We sample the extended action from
this distribution during the train time. (u$"¢, of™°) =
Encoder(sg, ag, ..., a14k—1); 2t ~ N(u§", o). EAP
is trained from expert trajectory data D = {(si,al)T_}V |
by optimizing the following loss function L = Ly + AL,
where Ly, = KLN (™, of™)||N (ud",077)) and
Ly = —% fif_l mi(a;|zt). Ly forces the extended
action distribution generated by the prior to place high prob-
ability on extended actions inferred by the encoder from the
expert trajectory data. L, forces the decoder to maximize
the action likelihood of the expert sub-trajectories. Note
than k£ and)\ are hyper-parameters. During the inference
time, the prior takes in the current state s; and produces
an extended action z; which gets unrolled into an action
sub-trajectory (ay, . . ., at+k—1) by the decoder. Thus, EAP
takes in the environment feedback every k time steps. We
visualize the EAP model in figure 1.

2.2. Transfer to new tasks

The decoder of the EAP 7, captures the trajectory distri-
bution that was useful for solving the task on which it was
trained. Furthermore, the decoder is dependent on the state
only through the extended action. Therefore, when given a
new task that requires the same strategy, we can just fine-
tune the prior or learn a new policy on top of the decoder to
quickly learn the new task. Intuitively, the learning problem
becomes easier because exploration is more structured as
we are exploring in space of useful trajectories and the task
horizon gets reduced by a factor of k. As shown in sec-
tion 3, learning policies with EAP leads to faster transfer in
both visual and non-visual domains even when the new task
has different state distribution and different reward function.
The only assumptions we make are that the tasks should
have the same action space and require similar strategy so
that they have the same distribution of useful trajectories.

3. Experiments

We will empirically validate the following claims: (1) Since
EAP captures useful structure in the action space, learning
with EAP results in faster and better transfer to new tasks.
(2) Learning with EAP improves exploration which leads to
substantial improvements in multi-task learning.

Maze -> Maze Maze -> Heist

— Vanilla (Pretrained)
Vanilla (Scratch)

W — EAP (Pretrained)

W —— LMP (Pretrained)

Reward

Time steps 17

Time steps 7

Figure 2. With improved exploration, policy learned with EAP
learns faster on visually new domains, new levels (100-200 levels)
of maze and heist (0-100 levels), and achieves a better performance
when compared to vanilla policy (either pretrained or learned from
scratch) and LMP policy. We pre-train vanilla policy, LMP policy
and EAP on 0-100 levels of maze. The dark lines represent mean
reward over 3 independent seeds. The shaded area represent one
standard deviation interval.

3.1. Learning policies with EAP leads to faster and
better transfer

We evaluate transfer performance in three settings: (a) the
dynamics and visual statistics are preserved between tasks,
but the reward function changes; (b) the dynamics and re-
ward structure remains the same, but visual statistics change;
and finally (c) scenarios where dynamics, reward function
and visual statistics all change. This evaluation is con-
ducted using six games (maze, heist, ninja, coinrun, jumper,
climber) from the procgen (Cobbe et al., 2019) environ-
ment suite. For each game, procgen provides thousands of
levels. Different levels of the same game have the same
dynamics and reward structure, but are visually different.
The three settings described above can be created by either
transferring between different levels of the same game or
by transferring across games. In each scenario, EAP and
the baseline methods are pre-trained on hundred levels of
the same game. The pre-trained policies are then finetuned
using PPO (Schulman et al., 2017) on 100 test levels.

We compare the performance of our method, EAP, against:
(1) Vanilla (pretrained): 1If EAP indeed captures useful
action priors, then it should outperform a flat policy that
explores in the space of all actions. Transferring with
vanilla (pretrained) amounts to finetuning 7 (a¢|s;), instead
of the EAP policy which is finetuning 7 (z¢|s;). (2) Vanilla
(scratch): If a policy trained from scratch on testing levels
outperforms a pre-trained policy, it indicates that pre-trained
policy did not capture any transferable information. (3)
LMP (Lynch et al., 2019): We also compare against a previ-
ously published method for learning skills, also described
in Appendix B.

Transfer to tasks with different reward structure: The
maze game (see Figure 2) requires the agent to navigate to a
goal location in a 2D grid world. A sparse reward of +1 is
provided when the agent reaches the goal. The heist game
has similar visual statistics and dynamics as maze, but has a

Learning Action Priors for Visuomotor transfer

—— Vanilla (Pretrained) Vanilla (Scratch) ~—— EAP (Pretrained)

Ninja -> Ninja Jumper -> Jumper

00 02 04 06 08 10 12 0 2 4 6 8
Tea 167

Time steps Time steps

Ninja -> Coinrun

Jumper -> Climber

0.5 15

4 10
Time steps 17 Time steps 18

Figure 3. Policies learned with EAP consistently learns faster than
(pretrained) vanilla policies on visually new domains: (a) new
levels (100-200 levels) of the same game (b) new game (0-100
levels). We pre-train vanilla policy and EAP on 0-100 levels of a
game. The dark lines represent mean reward over 3 independent
seeds. The shaded area represent one standard deviation interval.

different reward structure. Here the agent needs to collect
keys to open locks before it can get to the goal. The reward
is again sparse, making it significantly more challenging
than the maze game.

Results in Figure 2 show two things: (a) EAP is noticeably
better than baseline methods when transferring to new levels
of the maze environment (left column) and (b) EAP substan-
tially outperforms baselines when transferred to heist. These
results convincingly demonstrate that opposed to simply
transferring visual representations (i.e., Vanilla (pretrained),
transferring visuo-motor information using action priors
helps the agent easily adapt to new reward structures. Quite
interestingly, performance of LMP is comparable to Vanilla
(pretrained). This suggests that LMP fails to capture any
useful action priors. As discussed in Appendix B, LMP is
prone to posterior collapse when learning in environments
such as maze that have a single optimal strategy. In contrast,
EAP doesn’t suffer from this problem and we expect LMP
and EAP to perform similarly in scenarios where there are
multiple optimal strategies (i.e., multi-modality) . Due to in-
ferior performance of LMP, we do not include comparisons
to it in the subsequent experiments.

Transfer to tasks with different visual appearances: Dif-
ferent levels of the same game in procgen are designed to
have visual differences, but have the same dynamics and
rewards. One of our hypotheses was that in such scenarios,
exploring with action priors will lead to better transfer in
comparison to transferring only visual priors. Results of
transfer between different levels of maze shown in Figure 2
(left column) already confirmed our hypotheses. To ensure
generality of the results, we also evaluated various methods
on the games of ninja and jumper. Results in Figure 3(a)

Models Average Success rate
MT10 MT50
PPO 0.15+0.05 | 0.05£0.02
PPO + EAP (ours) | 0.7 +£0.04 | 0.45 4+ 0.03
SAC* 0.39 0.28
BC 0.84 £ 0.01 | 0.67 £0.01
Average of experts 1.0 0.82

Table 1. Due to improved exploration, EAP outperforms vanilla
policy on MT10 ands MT50. We also provide two oracles: Average
of experts and Behavioral cloning (BC). Methods with * are taken
from other papers. The standard deviations is calculated over 3
independent seeds.

show that EAP indeed outperforms the baselines. It is in-
teresting to observe that training from scratch outperforms
the vanilla pre-trained policy at transferring across levels
of ninja. This shows that there are significant visual dif-
ferences between different levels of ninja. Despite these
differences, EAP leads to good transfer.

Transfer to tasks with different rewards, dynamics and
visuals: Finally, in Figure 2(b) we show transfer perfor-
mance across games. The policies pre-trained on ninja and
Jjumper are transferred to coinrun and climber respectively.
While all four of these are platform games, there are signifi-
cant differences. For example, in coinrun the agent needs to
advance to the rightmost point to get to the goal, whereas
in climber agent mostly needs to climb up and in ninja the
agent must also shoot the enemies. Due to lack of significant
shared structure between games, transferring with EAP does
not results in performance improvements when compared
to training from scratch. However, EAP does outperform
vanilla policy by a big margin. While we are able to transfer
information about useful actions, to achieve good transfer
across different games the agent must realize that jump-
ing on platforms, over enemies etc. are useful sub-tasks.
However, current RL agents lack this ability and this is an
exciting area for future research.

3.2. Training policies with EAP improves performance
on multi-task RL

To investigate advantages of EAP in context of multi-task
learning, we pre-train EAP using successful trajectories
from goal-conditioned pick and place task. We chose this
task as pick-place is a basic operation for performing more
complex manipulation tasks that are part of metaworld. Re-
sults in Table 1 show that PPO + EAP outperforms both
PPO and Soft Actor Critic (SAC) (Haarnoja et al., 2018)
on MT10 and MT50. While EAP outperforms other RL
methods, it achieves about 70% of the accuracy obtained by
training a policy with behavior cloning (BC). Training with
BC essentially overcomes the exploration problem and is
thereby essentially an upper bound (i.e., oracle) for the EAP
performance. We detail ablation studies in the Appendix C.

